Cilostazol Attenuates 4-hydroxynonenal-enhanced CD36 Expression on Murine Macrophages via Inhibition of NADPH Oxidase-derived Reactive Oxygen Species Production.

Korean J Physiol Pharmacol

Department of Pharmacology, School of Medicine, Pusan National University, Yangsan 626-770, MRC for Ischemic Tissue Regeneration and Medical Research Institute, Pusan National University, Busan 602-739, Korea.

Published: April 2009

Although anti-atherogenic effects of cilostazol have been suggested, its effects on the expression of SR in macrophages are unclear. This study investigated the role of cilostazol on CD36 expression of murine macrophages enhanced by HNE, a byproduct of lipid peroxidation. The stimulation of macrophages with HNE led to an increased expression of CD36, which was significantly attenuated by NAC, an antioxidant. Moreover, the increased production of ROS by HNE was completely abolished by NADPH oxidase inhibitors, DPI and apocynin, as well as by the 5-LO inhibitor, MK886, but not by inhibitors for other oxidases. This suggested that NADPH-oxidase and 5-LO were major sources of ROS induced by HNE. In addition, HNE-enhanced expression of CD36 was reduced by these inhibitors, which indicated a role for NADPH oxidase and 5-LO on CD36 expression. In our present study, cilostazol was a significant inhibitor of ROS production, as well as CD36 expression induced by HNE. An increase in NADPH oxidase activity by HNE was significantly attenuated by cilostazol, however cilostazol had no effect on HNE-enhanced 5-LO activity. Together, these results suggest that cilostazol attenuates HNE-enhanced CD36 expression on murine macrophages thorough inhibition of NADPH oxidase-derived ROS generation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766702PMC
http://dx.doi.org/10.4196/kjpp.2009.13.2.99DOI Listing

Publication Analysis

Top Keywords

cd36 expression
20
expression murine
12
murine macrophages
12
nadph oxidase
12
cilostazol attenuates
8
expression
8
inhibition nadph
8
nadph oxidase-derived
8
expression cd36
8
induced hne
8

Similar Publications

Microglia-mediated neuroinflammation plays a crucial role in Alzheimer's disease (AD). Tinosinenside A (Tis A) is a novel sesquiterpene glycoside isolated from the dried rattan stem of Tinospora sinensis (Lour.) Merr.

View Article and Find Full Text PDF

Effect of the S100A9/AMPK pathway on PM2.5-mediated mouse lung injury.

Iran J Basic Med Sci

January 2025

Graduate school, Shenyang Medical College, Shenyang. No. 146, Huanghe North Street, Shenyang, People's Republic of China.

Objectives: Particulate matter 2.5 (PM2.5), particles with an aerodynamic diameter less than 2.

View Article and Find Full Text PDF

Unraveling the pathophysiology of type 2 diabetes with a new selectively bred animal model, the Oikawa-Nagao mouse.

Diabetol Int

January 2025

Department of Endocrinology, Metabolism and Nephrology, Graduate School of Medicine, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo, 113-8603 Japan.

Type 2 diabetes (T2D) is a polygenic disease, and the development of animal models by selective breeding is crucial for understanding its etiology, pathophysiology, complications, and treatments. We recently developed a new T2D model, the Oikawa-Nagao (ON) mouse, by selectively breeding mice with inferior glucose tolerance [diabetes-prone (ON mouse DP®; ON-DP) strain] and superior glucose tolerance [diabetes-resistant (ON mouse DR®; ON-DR) strain] on a high-fat diet. ON-DP mice are predisposed to develop diabetes and obesity after being fed a high-fat diet, compared to ON-DR mice.

View Article and Find Full Text PDF

Natural small molecule compounds play crucial roles in regulating fat deposition. Beta-sitosterol exhibits multiple biological activities such as cholesterol reduction and anticancer effects. However, its regulatory mechanism in the differentiation of bovine preadipocytes remains unclear.

View Article and Find Full Text PDF

Metal-Phenolic Nanomedicines Targeting Fatty Acid Metabolic Reprogramming to Overcome Immunosuppression in Radiometabolic Cancer Therapy.

ACS Appl Mater Interfaces

January 2025

Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR 999078, China.

Radiation therapy (RT) is a prevalent cancer treatment; however, its therapeutic outcomes are frequently impeded by tumor radioresistance, largely attributed to metabolic reprogramming characterized by increased fatty acid uptake and oxidation. To overcome this limitation, we developed polyphenol-metal coordination polymer (PPWQ), a novel nanoradiotherapy sensitizer specifically designed to regulate fatty acid metabolism and improve RT efficacy. These nanoparticles (NPs) utilize a metal-phenolic network (MPN) to integrate tungsten ions (W), quercetin (QR), and a PD-L1-blocking peptide within a PEG-polyphenol scaffold.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!