Fast numerical simulation of diffraction from large volume holograms.

J Opt Soc Am A Opt Image Sci Vis

Institute of Physics, University of Bonn, Wegelerstrasse 8, D-53115 Bonn, Germany.

Published: November 2009

An efficient way to numerically calculate diffraction from large volume holograms is developed using the first-order Born approximation. For this, everything except the propagating part of the Green's function is neglected, and the fact that the gratings have a slowly varying envelope is used. The results of the new method are compared with analytical solutions of plane-wave diffraction with absorption, with phase-conjugated readout of a hologram recorded with a point source, and with numerical simulations of shift multiplexing with high-numerical-aperture microscope objectives. We show that the new method gives correct results in all cases and is several orders of magnitudes faster than FFT-based integration.

Download full-text PDF

Source
http://dx.doi.org/10.1364/JOSAA.26.002393DOI Listing

Publication Analysis

Top Keywords

diffraction large
8
large volume
8
volume holograms
8
fast numerical
4
numerical simulation
4
simulation diffraction
4
holograms efficient
4
efficient numerically
4
numerically calculate
4
calculate diffraction
4

Similar Publications

Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.

View Article and Find Full Text PDF

Owing to its high spatial resolution and its high sensitivity to chemical element detection, transmission electron microscopy (TEM) technique enables to address high-level materials characterization of advanced technologies in the microelectronics field. TEM instruments fitted with various techniques are well-suited for assessing the local structural and chemical order of specific details. Among these techniques, 4D-STEM is suitable to estimate the strain distribution of a large field of view.

View Article and Find Full Text PDF

X-ray crystallography has tremendously served structural biology by routinely providing high-resolution 3D structures of macromolecules. The extent of information encoded in the X-ray crystallography is proportional to which resolution the crystals diffract and the structure can be refined to. Therefore, there is a continuous effort to obtain high-quality crystals, especially for those proteins, which are considered difficult to crystallize into high-quality protein crystals of suitable sizes for X-ray crystallography.

View Article and Find Full Text PDF

Richardson-Lucy (RL) deconvolution optimizes the likelihood of the object estimate for an incoherent imaging system. It can offer an increase in contrast, but converges poorly, and shows enhancement of noise as the iteration progresses. We have discovered the underlying reason for this problematic convergence behaviour using a Cramér Rao Lower Bound (CRLB) analysis.

View Article and Find Full Text PDF

Structural and electrochemical investigation of P2-NaFeMnO high-performance sodium ion cathode materials.

J Colloid Interface Sci

January 2025

School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China. Electronic address:

Fe/Mn-based metal oxides have attracted considerable attention as cathode materials for sodium-ion batteries owing to their low cost and high specific capacity. However, the relatively large ionic radius of the sodium ion (1.02 Å) results in inefficient diffusion kinetics, resulting in reduced battery performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!