An efficient way to numerically calculate diffraction from large volume holograms is developed using the first-order Born approximation. For this, everything except the propagating part of the Green's function is neglected, and the fact that the gratings have a slowly varying envelope is used. The results of the new method are compared with analytical solutions of plane-wave diffraction with absorption, with phase-conjugated readout of a hologram recorded with a point source, and with numerical simulations of shift multiplexing with high-numerical-aperture microscope objectives. We show that the new method gives correct results in all cases and is several orders of magnitudes faster than FFT-based integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/JOSAA.26.002393 | DOI Listing |
Nanoscale Adv
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University Taif 21944 Saudi Arabia.
Mesoporous materials have garnered significant interest because of their porous structure, large surface area and ease of surface functionalization to incorporate the functional groups of choice. Herein, chiral mesoporous silica nanoparticles (CMSNPs) were prepared using quaternary amino silane as the template, tetramethyl orthosilicate as the silica source and proline and cellulose as chiral selector. The developed CMSNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), elemental analysis, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction analysis, BET surface area analysis and BJH pore size/volume analysis.
View Article and Find Full Text PDFMicron
January 2025
CEMES-CNRS, 29 Rue Jeanne Marvig, Toulouse 31055, France.
Owing to its high spatial resolution and its high sensitivity to chemical element detection, transmission electron microscopy (TEM) technique enables to address high-level materials characterization of advanced technologies in the microelectronics field. TEM instruments fitted with various techniques are well-suited for assessing the local structural and chemical order of specific details. Among these techniques, 4D-STEM is suitable to estimate the strain distribution of a large field of view.
View Article and Find Full Text PDFEur Biophys J
January 2025
Faculty of Sciences, P. J. Šafárik University, Košice, Slovakia.
X-ray crystallography has tremendously served structural biology by routinely providing high-resolution 3D structures of macromolecules. The extent of information encoded in the X-ray crystallography is proportional to which resolution the crystals diffract and the structure can be refined to. Therefore, there is a continuous effort to obtain high-quality crystals, especially for those proteins, which are considered difficult to crystallize into high-quality protein crystals of suitable sizes for X-ray crystallography.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Imaging Physics, Delft University of Technology, Delft, The Netherlands.
Richardson-Lucy (RL) deconvolution optimizes the likelihood of the object estimate for an incoherent imaging system. It can offer an increase in contrast, but converges poorly, and shows enhancement of noise as the iteration progresses. We have discovered the underlying reason for this problematic convergence behaviour using a Cramér Rao Lower Bound (CRLB) analysis.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
School of Chemistry and Chemical Engineering, Inner Mongolia University of Science & Technology, Baotou, Inner Mongolia 014010, China. Electronic address:
Fe/Mn-based metal oxides have attracted considerable attention as cathode materials for sodium-ion batteries owing to their low cost and high specific capacity. However, the relatively large ionic radius of the sodium ion (1.02 Å) results in inefficient diffusion kinetics, resulting in reduced battery performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!