Elastase-induced intracranial aneurysms in hypertensive mice.

Hypertension

Department of Anesthesia and Perioperative Care, University of California, San Francisco, 1001 Potrero Ave, No. 3C-38, San Francisco, CA 94110, USA.

Published: December 2009

AI Article Synopsis

  • Researchers are exploring how intracranial aneurysms form and grow, which is currently not well understood.
  • They developed an animal model using mice that combines hypertension and elastic lamina degeneration to reliably induce large aneurysms in just two weeks.
  • The study found that using doxycycline to inhibit matrix metalloproteinases (MMPs) significantly reduced aneurysm formation, suggesting MMP activation is crucial in the development of these conditions.

Article Abstract

Mechanisms of formation and growth of intracranial aneurysms are poorly understood. To investigate the pathophysiology of intracranial aneurysms, an animal model of intracranial aneurysm yielding a high incidence of large aneurysm formation within a short incubation period is needed. We combined two well-known clinical factors associated with human intracranial aneurysms, hypertension and the degeneration of elastic lamina, to induce intracranial aneurysm formation in mice. Roles of matrix metalloproteinases (MMPs) in this model were investigated using doxycycline, a broad-spectrum MMP inhibitor, and MMP knockout mice. Hypertension was induced by continuous infusion of angiotensin II for 2 weeks. The disruption of elastic lamina was achieved by a single stereotaxic injection of elastase into the cerebrospinal fluid at the right basal cistern. A total of 77% of the mice that received 35 milliunits of elastase and 1000 ng/kg per minute of angiotensin II developed intracranial aneurysms in 2 weeks. There were dose-dependent effects of elastase and angiotensin II on the incidence of aneurysms. Histologically, intracranial aneurysms observed in this model closely resembled human intracranial aneurysms. Doxycycline, a broad-spectrum MMP inhibitor, reduced the incidence of aneurysm to 10%. MMP-9 knockout mice, but not MMP-2 knockout mice, had reduced the incidence of intracranial aneurysms. In summary, a stereotaxic injection of elastase into the basal cistern in hypertensive mice resulted in intracranial aneurysms that closely resembled human intracranial aneurysms. The intracranial aneurysm formation in this model appeared to depend on MMP activation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2797444PMC
http://dx.doi.org/10.1161/HYPERTENSIONAHA.109.138297DOI Listing

Publication Analysis

Top Keywords

intracranial aneurysms
40
intracranial
12
intracranial aneurysm
12
aneurysm formation
12
human intracranial
12
knockout mice
12
aneurysms
11
hypertensive mice
8
elastic lamina
8
doxycycline broad-spectrum
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!