We investigated the role of polyamines (PAs) in lima bean (Phaseolus lunatus) leaves on the production of herbivorous mite (Tetranychus urticae)-induced plant volatiles that attract carnivorous natural enemies of the herbivores. To do this, we focused on the effects of the exogenous PAs [cadaverine, putrescine, spermidine and spermine (Spm)] on the production of volatiles, H(2)O(2) and jasmonic acid (JA) and the levels of defensive genes, cytosolic calcium and reactive oxygen species (ROS). Among the tested PAs, Spm was the most active in inducing the production of volatile terpenoids known to be induced by T. urticae. An increase in JA levels was also found after Spm treatment, indicating that Spm induces the biosynthesis of JA, which has been shown elsewhere to regulate the production of some volatile terpenoids. Further, treatment with JA and Spm together resulted in greater volatile emission than that with JA alone. In a Y-tube olfactometer, leaves treated with Spm + JA attracted more predatory mites (Phytoseiulus persimilis) than those treated with JA alone. After treatment with Spm + JA, no effects were found on the enzyme activity of polyamine oxidase and copper amine oxidase. However, induction of calcium influx and ROS production, and increased enzyme activities and gene expression for NADPH oxidase complex, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase and glutathione peroxidase were found after treatment with Spm + JA. These results indicate that Spm plays an important role in the production of T. urticae-induced lima bean leaf volatiles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/pcp/pcp153 | DOI Listing |
Pest Manag Sci
January 2025
College of Plant Protection, Yangzhou University, Yangzhou, China.
Background: Phaseolus lunatus, commonly known as the lima bean, is a leguminous crop cultivated in various regions worldwide. It is native to tropical America and is extensively grown in both tropical and temperate climates. Lima beans are highly nutritious and versatile, serving not only as a food and vegetable, but also as a source of green manure.
View Article and Find Full Text PDFJ Fluoresc
January 2025
Department of Chemistry, Sardar Vallabhbhai National Institute Technology, Surat, Gujarat, 395007, India.
An easy-to-synthesize aggregation-induced emission (AIE) active Schiff base HNSA was obtained by condensing equimolar amount of 3-hydroxy-2-naphthohydrazide and salicylaldehyde. In pure DMSO, HNSA is non-fluorescent, but increasing the HEPES (HO, 10 mM, pH 7.4) fraction (f) ≥ 90% showed an intense green fluorescence with maximum fluorescence intensity at 515 nm.
View Article and Find Full Text PDFJ Econ Entomol
January 2025
Department of Entomology, University of California, Riverside, CA, USA.
The carpophilus beetle, Carpophilus truncatus Murray, 1864 (Coleoptera: Nitidulidae) is an invasive pest recently detected in California's tree nut crop orchards. Here we report a simple, labor-saving, and cost-effective rearing system for C. truncatus utilizing banana and industrial sand components.
View Article and Find Full Text PDFCurr Res Food Sci
November 2024
Embrapa Food Technology, Avenida das Américas, 29501, Rio de Janeiro, RJ, 23020-470, Brazil.
There is an enormous demand to develop new sources of proteins, mainly to supply the growing plant-based food market worldwide, with the push for more sustainable and healthier products. The objective of this study was to evaluate the composition and the nutritional properties of commercial soybean, pea, and fava bean protein ingredients and compare them with an in-house ingredient (flour and protein concentrate), obtained from the main Brazilian cultivar of common bean (, Pinto bean). The protein content of the common bean concentrate (79.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China; Sanya Research Academy, Chinese Academy of Tropical Agriculture Science, Sanya 572000, China. Electronic address:
Cyanogenic plants can release toxic hydrogen cyanide (HCN) to defend against herbivory by hydrolyzing the cyanogenic glycosides (CNGs) with its β-glucosidases (β-GLUs). Numerous studies have speculated this CNG-mediated toxicity by a plant-pest interaction manner. However, the specific toxic effect of HCN was not well-demonstrated because of the interference of other ingested metabolites.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!