Background: During the development of the central nervous system (CNS) of Drosophila, neuronal stem cells, the neuroblasts (NBs), first generate a set of highly diverse neurons, the primary neurons that mature to control larval behavior, and then more homogeneous sets of neurons that show delayed maturation and are primarily used in the adult. These latter, 'secondary' neurons show a complex pattern of expression of broad, which encodes a transcription factor usually associated with metamorphosis, where it acts as a key regulator in the transitions from larva and pupa.

Results: The Broad-Z3 (Br-Z3) isoform appears transiently in most central neurons during embryogenesis, but persists in a subset of these cells through most of larval growth. Some of the latter are embryonic-born secondary neurons, whose development is arrested until the start of metamorphosis. However, the vast bulk of the secondary neurons are generated during larval growth and bromodeoxyuridine incorporation shows that they begin expressing Br-Z3 about 7 hours after their birth, approximately the time that they have finished outgrowth to their initial targets. By the start of metamorphosis, the oldest secondary neurons have turned off Br-Z3 expression, while the remainder, with the exception of the very youngest, maintain Br-Z3 while they are interacting with potential partners in preparation for neurite elaboration. That Br-Z3 may be involved in early sprouting is suggested by ectopically expressing this isoform in remodeling primary neurons, which do not normally express Br-Z3. These cells now sprout into ectopic locations. The expression of Br-Z3 is transient and seen in all interneurons, but two other isoforms, Br-Z4 and Br-Z1, show a more selective expression. Analysis of MARCM clones shows that the Br-Z4 isoform is expressed by neurons in virtually all lineages, but only in those cells born during a window during the transition from the second to the third larval instar. Br-Z4 expression is then maintained in this temporal cohort of cells into the adult.

Conclusion: These data show the potential for diverse functions of Broad within the developing CNS. The Br-Z3 isoform appears in all interneurons, but not motoneurons, when they first begin to interact with potential targets. Its function during this early sorting phase needs to be defined. Two other Broad isoforms, by contrast, are stably expressed in cohorts of neurons in all lineages and are the first examples of persisting molecular 'time-stamps' for Drosophila postembryonic neurons.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2780399PMC
http://dx.doi.org/10.1186/1749-8104-4-39DOI Listing

Publication Analysis

Top Keywords

neurons
12
secondary neurons
12
primary neurons
8
br-z3
8
br-z3 isoform
8
isoform appears
8
larval growth
8
start metamorphosis
8
expression
6
isoform
5

Similar Publications

Cellular Cholesterol Loss Impairs Synaptic Vesicle Mobility via the CAMK2/Synapsin-1 Signaling Pathway.

Front Biosci (Landmark Ed)

January 2025

Department of Neurology, Jinshan Hospital, Fudan University, 201508 Shanghai, China.

Background: Neuronal cholesterol deficiency may contribute to the synaptopathy observed in Alzheimer's disease (AD). However, the underlying mechanisms remain poorly understood. Intact synaptic vesicle (SV) mobility is crucial for normal synaptic function, whereas disrupted SV mobility can trigger the synaptopathy associated with AD.

View Article and Find Full Text PDF

Ferroptosis: A New Pathway in the Interaction between Gut Microbiota and Multiple Sclerosis.

Front Biosci (Landmark Ed)

January 2025

The First College of Clinical Medical Science, China Three Gorges University, 443000 Yichang, Hubei, China.

Multiple sclerosis (MS) is a chronic autoimmune disorder marked by neuroinflammation, demyelination, and neuronal damage. Recent advancements highlight a novel interaction between iron-dependent cell death, known as ferroptosis, and gut microbiota, which may significantly influences the pathophysiology of MS. Ferroptosis, driven by lipid peroxidation and tightly linked to iron metabolism, is a pivotal contributor to the oxidative stress observed in MS.

View Article and Find Full Text PDF

Background: Recent studies suggest that the anterior limb of the internal capsule may be an area of convergence for multiple compulsion loops. In this study, the role of different dopaminergic compulsion loops in the mechanism of obsessive-compulsive disorder (OCD) was investigated by selectively damaging dopaminergic neurons or fibers in the corresponding targets with 6-hydroxydopamine (6-OHDA) and depicting the anatomical map of various compulsion loops located in the anterior limb of the internal capsule.

Methods: A total of 52 male Sprague Dawley (SD) rats were exposed to either saline (1 mL/kg, NS group, n = 6) or quinpirole (QNP, dopamine D2-agonist, 0.

View Article and Find Full Text PDF

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Background: Observation, execution, and imitation of target actions based on mirror neuron network (MNN) have become common physiotherapy strategies. Electrical stimulation (ES) is a common intervention to improve muscle strength and motor control in rehabilitation treatments. It is possible to enhance MNN's activation by combining motor execution (ME) and motor imitation (MI) with ES simultaneously.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!