This study developed and examined the characterization of Benzidamine hydrochloride (BNZ) bioadhesive gels as platforms for oral ulcer treatments. Bioadhesive gels were prepared with four different hydroxypropylmethylcellulose (HPMC) types (E5, E15, E50 and K100M) with different ratios. Each formulation was characterized in terms of drug release, rheological, mechanical properties and adhesion to a buccal bovine mucosa. Drug release was significantly decreased as the concentration and individual viscosity of each polymeric component increased due to improved viscosity of the gel formulations. The amount of drug released for the formulations ranged from 0.76 +/- 0.07 and 1.14 +/- 0.01 (mg/cm2 +/- SD). Formulations exhibited pseudoplastic flow and all formulations, increasing the concentration of HPMC content significantly raised storage modulus (G'), loss modulus (G''), dynamic viscosity (eta') at 37 degrees C. Increasing concentration of each polymeric component also significantly improved the hardness, compressibility, adhesiveness, cohesiveness and mucoadhesion but decreased the elasticity of the gel formulations. All formulations showed non-Fickian diffusion due to the relaxation and swelling of the polymers with water. In conclusion, the formulations studied showed a wide range of mechanical and drug diffusion characteristics. On the basis of the obtained data, the bioadhesive gel formulation which was prepared with 2.5% HPMC K 100M was determined as the most appropriate formulation for buccal application in means of possessing suitable mechanical properties, exhibiting high cohesion and bioadhesion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3109/10837450902882351 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!