A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Role of the nuclear receptors HNF4 alpha, PPAR alpha, and LXRs in the TNF alpha-mediated inhibition of human apolipoprotein A-I gene expression in HepG2 cells. | LitMetric

The expression of the apolipoprotein A-I gene (apoA-I) in hepatocytes is repressed by pro-inflammatory cytokines such as IL-1beta and TNFalpha. In this work, we have demonstrated that treatment of HepG2 human hepatoma cells with chemical inhibitors for JNK, p38 protein kinases, and NFkappaB transcription factor abolishes the TNFalpha-mediated inhibition of human apoA-I gene expression in HepG2 cells. In addition, we have shown that TNFalpha decreases also the rate of secretion of apoA-I protein by HepG2 cells, and this effect depends on JNK and p38, but not on NFkappaB and MEK1/2 signaling pathways. The inhibitory effect of TNFalpha has been found to be mediated by the hepatic enhancer of the apoA-I gene. The decrease in the level of human apoA-I gene expression under the impact of TNFalpha appears to be partly mediated by the inhibition of HNF4alpha and PPARalpha gene expression. Treatment of HepG2 cells with PPARalpha antagonist (MK886) or LXR agonist (TO901317) abolishes the TNFalpha-mediated decrease in the level of apoA-I gene expression. PPARalpha agonist (WY-14643) abolishes the negative effect of TNFalpha on apoA-I gene expression in the case of simultaneous inhibition of MEK1/2, although neither inhibition of MEK1/2 nor addition of WY-14643 leads to the blocking of the TNFalpha-mediated decrease in the level of apoA-I gene expression individually. The ligand-dependent regulation of apoA-I gene expression by PPARalpha appears to be affected by the TNFalpha-mediated activation of MEK1/2 kinases, probably through PPARalpha phosphorylation. Treatment of HepG2 cells with PPARalpha and LXR synthetic agonists also blocks the inhibition of apoA-I protein secretion in HepG2 cells under the impact of TNFalpha. A chromatin immunoprecipitation assay demonstrates that TNFalpha leads to a 2-fold decrease in the level of PPARalpha binding with the apoA-I gene hepatic enhancer. At the same time, the level of LXRbeta binding with the apoA-I gene hepatic enhancer is increased 3-fold under the impact of TNFalpha. These results suggest that nuclear receptors HNF4alpha, PPARalpha, and LXRs are involved in the TNFalpha-mediated downregulation of human apoA-I gene expression and apoA-I protein secretion in HepG2 cells.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi9015742DOI Listing

Publication Analysis

Top Keywords

apoa-i gene
40
gene expression
36
hepg2 cells
28
decrease level
16
apoa-i
14
gene
13
treatment hepg2
12
human apoa-i
12
apoa-i protein
12
hepatic enhancer
12

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!