Muscle channelopathies caused by mutations in the SCN4A gene that encodes the muscle sodium channel are transmitted by autosomal-dominant inheritance. We report herein the first cases of homozygous patients for sodium channel mutations responsible for paramyotonia congenita (I1393T) or hypokalemic periodic paralysis (R1132Q). A parallel was drawn between this unprecedented situation and that of myotonia congenita by including patients homozygous or heterozygous for the CLCN1 I556N channel mutation, which is known for incomplete dominance and penetrance. Standardized electromyographic (EMG) protocols combining exercise and cold served as provocative tests to compare homozygotes with heterozygotes for each of the three mutations. Surface-recorded compound muscle action potentials (CMAPs) were used to monitor muscle electrical activity, and myotonic discharges were evaluated by needle EMG. In heterozygous patients, exercise tests disclosed abnormal patterns of CMAP changes, which matched those previously described for similar dominant sodium and chloride channel mutations. Homozygotes showed much more severe clinical features and CMAP changes. We hypothesized that the presence of 100% defective ion channels in the homozygotes could account for the most severe phenotype. This suggests that the severity of muscle channelopathies depends both on the degree of channel impairment caused by the mutation and on the number of mutant channels engaged in the pathophysiological process. Overall, this study has practical consequences for the diagnosis of muscle channelopathies and raises new questions about their pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mus.21520DOI Listing

Publication Analysis

Top Keywords

muscle channelopathies
16
severity muscle
8
sodium channel
8
channel mutations
8
cmap changes
8
muscle
7
mutations
5
channel
5
homozygosity dominant
4
dominant mutations
4

Similar Publications

In Periodic Paralysis (PP), a rare inherited condition caused by mutation in skeletal muscle ion channels, the phenotype changes with age, transitioning from the episodic attacks of weakness that give the condition its name, to a more degenerative phenotype of permanent progressive weakness and myopathy. This leads to disability and reduced quality of life. Neither the cause of this phenotype transition, nor why it occurs around the age of 40 is known.

View Article and Find Full Text PDF

Cortactin (CTTN) is an actin-binding protein regulating actin polymerization and stabilization, which are vital processes for maintaining skeletal muscle homeostasis. Despite the established function of CTTN in actin cytoskeletal dynamics, its role in the myogenic differentiation of progenitor cells remains largely unexplored. In this study, we investigated the role of CTTN in the myogenic differentiation of C2C12 myoblasts by analyzing its effects on actin cytoskeletal remodeling, myocardin-related transcription factor A (MRTFA) nuclear translocation, serum response factor (SRF) activation, expression of myogenic transcription factors, and myotube formation.

View Article and Find Full Text PDF

Neonatal diabetes mellitus is a rare disorder with prevalence of one in 400,000 live births that's defined by persistent hyperglycaemia within the first six months of life. Neonatal diabetes is heterogeneous and can be transient or permanent. Developmental delay, Epilepsy and Neonatal Diabetes (DEND) syndrome is characterised by developmental delay, epilepsy, and neonatal diabetes.

View Article and Find Full Text PDF

Objectives: To report a case of adult-onset non-dystrophic myotonia complicated by recurrent episodes of laryngospasm.

Methods: The patient is a 35-year-old man who was admitted to our hospital for recurrent episodes of apnea requiring endotracheal intubation with mechanical ventilation. He underwent extensive evaluation, including EMG, laryngoscopy, muscle biopsy, and genetic testing, which revealed a diagnosis of non-dystrophic myotonia.

View Article and Find Full Text PDF

Oxaliplatin induces acute neuropathy within a few hours post-treatment, with symptoms persisting for several days. Delayed onset muscle soreness also causes the delayed onset of mechanical pain sensation starting at about 6-8 h and lasting up to a week after exercise. Both conditions come with impaired proprioception and could be chronic if these bouts are repeated frequently.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!