With regard to the literature, several factors are considered to have an impact on postoperative mobility after lumbar total disc replacement (TDR). As TDR results in a distraction of the ligamentous structures, theoretically the postoperatively disc height and ligamentous integrity have also an influence on biomechanics of a treated segment. The purpose of the study was to evaluate the influence of posterior longitudinal ligament (PLL) resection and segmental distraction on range of motion (ROM). Six human, lumbar spines (L2-L3) were tested with pure moments of ±7.5 Nm in a spine loading apparatus. The ROM was determined in all three motion planes. Testing sequences included: (1) intact state, (2) 10 mm prosthesis (PLL intact), (3) 10 mm prosthesis (PLL resected), (4) 12 mm prosthesis (PLL resected). The prosthesis used was a prototype with a constrained design using the ball-and-socket principle. The implantation of the 10 mm prosthesis already increased the disc height significantly (intact: 9.9 mm; 10 mm prosthesis: 10.6 mm; 12 mm prosthesis: 12.7 mm). Compared to the intact status, the implantation of the 10 mm prosthesis resulted in an increase of ROM for flexion/extension (8.6° vs 10.8°; P = 0.245) and axial rotation (2.9° vs 4.5°; P = 0.028), whereas lateral bending decreased (9.0° vs 7.6°; P = 0.445). The resection of the PLL for the 10 mm prosthesis resulted in an increase of ROM in all motion planes compared to the 10 mm prosthesis with intact PLL (flexion/extension: 11.4°, P = 0.046; axial rotation: 5.1°, P = 0.046; lateral bending: 8.6°, P = 0.028). The subsequent implantation of a 12 mm prosthesis, with resected PLL, resulted in a significant decrease of ROM in all motion planes compared to the 10 mm prosthesis with intact PLL (flexion/extension: 8.4°, P = 0.028; axial rotation: 3.3°, P = 0.028; lateral bending: 5.1°, P = 0.028). Compared to the intact status, the 12 mm prosthesis with resected PLL only decreased lateral bending significantly while the 10 mm prosthesis with intact PLL increased axial rotation significantly. The resection of the PLL during TDR results in a significant increase of ROM in all three principle motion planes. But it still remains unclear if this increase which is in median not more than 1° may alter the clinical results. Moreover, the destabilizing effect of PLL resection can be reversed using a higher implant. The prosthesis height seems more crucial than PLL preservation to maintain the primary stability after TDR.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3377805 | PMC |
http://dx.doi.org/10.1007/s00586-009-1193-4 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!