Metabolomics in glycomics.

Methods Mol Biol

Institute for Marine Biosciences, National Research Council Canada, Halifax, Nova Scotia, Canada.

Published: January 2010

Metabolomics is essentially the study of all low molecular weight molecules in a biological system under defined conditions. In glycomics, there is much potential to gain insight into the biosynthesis of novel glycoconjugate structures by probing the metabolome for substrates that are suspected, or known, to be involved in the biosynthetic processes. Recently, we employed the use of hydrophilic interaction liquid chromatography-mass spectrometry (HILIC-MS) in a focused metabolomic study of sugar-nucleotides relevant to the biosynthesis of highly novel carbohydrate modifications on the flagellin of Campylobacter sp. We exploited the unique selectivity of the HILIC-MS method for discriminating between closely related sugar-nucleotide intermediates and allowed their subsequent structural identification using a combination of high-resolution mass spectrometry and nuclear magnetic resonance (NMR) spectroscopy. In addition, the HILIC-MS method permitted screening of selected isogenic mutants for sugar-nucleotide intermediates to determine a role for the corresponding genes on the flagellin glycosylation locus in the biosynthesis of the novel carbohydrate modifications.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-60761-454-8_12DOI Listing

Publication Analysis

Top Keywords

biosynthesis novel
8
novel carbohydrate
8
carbohydrate modifications
8
hilic-ms method
8
sugar-nucleotide intermediates
8
metabolomics glycomics
4
glycomics metabolomics
4
metabolomics essentially
4
essentially study
4
study low
4

Similar Publications

Multiomics in cancer biomarker discovery and cancer subtyping.

Adv Clin Chem

January 2025

School of Biosystem and Biomedical Science, College of Health Science, Korea University, Seoul, Republic of Korea; Department of Integrated Biomedical and Life Science, Korea University, Seoul, Republic of Korea; BK21FOUR R&E Center for Learning Health Systems, Korea University, Seoul, Republic of Korea; L-HOPE Program for Community-Based Total Learning Health Systems, Korea University, Seoul, Republic of Korea. Electronic address:

The advent of multiomics has ushered in a new era of cancer research characterized by integrated genomic, transcriptomic and proteomic analysis to unravel the complexities of cancer biology and facilitate the discovery of novel biomarkers. This chapter provides a comprehensive overview of the concept of multiomics, detailing the significant advances in the underlying technologies and their contributions to our understanding of cancer. It delves into the evolution of genomics and transcriptomics, breakthroughs in proteomics, and overarching progress in multiomic methodologies, highlighting their collective impact on cancer biomarker discovery.

View Article and Find Full Text PDF

Emerging biomarkers in Gaucher disease.

Adv Clin Chem

January 2025

Center for Orphan Drug Research, Department of Experimental and Clinical Pharmacology, College of Pharmacy, University of Minnesota, Minneapolis, MN, United States. Electronic address:

Gaucher disease (GD) is a rare lysosomal disorder characterized by the accumulation of glycosphingolipids in macrophages resulting from glucocerebrosidase (GCase) deficiency. The accumulation of toxic substrates, which causes the hallmark symptoms of GD, is dependent on the extent of enzyme dysfunction. Accordingly, three distinct subtypes have been recognized, with type 1 GD (GD1) as the common and milder form, while types 2 (GD2) and 3 (GD3) are categorized as neuronopathic and severe.

View Article and Find Full Text PDF

Genome-wide identification and expression analysis of the BBX gene family in Lagerstroemia indica grown under light stress.

Int J Biol Macromol

January 2025

Hunan Key Laboratory for Breeding of Clonally Propagated Forest Trees, Hunan Academy of Forestry, Changsha, Hunan 410004, China. Electronic address:

B-box proteins (BBX) play pivotal roles in the regulation of numerous growth and developmental processes in plants, particularly the light-mediated biosynthesis of pigments. To elucidate the role of BBX transcription factors in the anthocyanin biosynthetic pathway of Lagerstroemia indica leaves, this study identified 41 BBX genes in the L. indica genome.

View Article and Find Full Text PDF

Parkinson's disease (PD), a neurodegenerative disorder without cure, is characterized by the pathological aggregation of α-synuclein (α-Syn) in Lewy bodies. Classic deposition pathway and condensation pathway contribute to α-Syn aggregation, and liquid-liquid phase separation is the driving force for condensate formation, which subsequently undergo liquid-solid phase separation to form toxic fibrils. Traditional Chinese Medicine (TCM) has a long history in treating neurodegenerative disease, herein; we identified chemicals from herbs that inhibit α-Syn aggregation.

View Article and Find Full Text PDF

Environmentally relevant concentrations of DBDPE (decabromodiphenyl ethane) induce intestinal toxicity in silkworms (Bombyx mori L.).

Environ Pollut

January 2025

Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing 210042, China; Key Laboratory of Pesticide Environmental Assessment and Pollution Control, Ministry of Ecology and Environmental of China, Nanjing 210042, China. Electronic address:

Decabromodiphenyl ethane (DBDPE) is one of the most extensively used novel brominated flame retardants, and it has been frequently detected in the global environment. Although organisms encounter various pollutants through the intestine, the toxicity effects of DBDPE exposure on the intestine and the potential mechanisms remain unclear. Here, by morphological observation, histopathology, high-throughput sequencing, and transcriptomics methods, we evaluated the effects of environmental (0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!