Diverse physiological and therapeutic insults that increase the amount of unfolded or misfolded proteins in the endoplasmic reticulum (ER) induce the unfolded protein response, an evolutionarily conserved protective mechanism that manages ER stress. Glucose-regulated protein 78/immunoglobulin heavy-chain binding protein (GRP78/BiP) is an ER-resident protein that plays a central role in the ER stress response and is the only known substrate of the proteolytic A subunit (SubA) of a novel bacterial AB(5) toxin. Here, we report that an engineered fusion protein, epidermal growth factor (EGF)-SubA, combining EGF and SubA, is highly toxic to growing and confluent epidermal growth factor receptor-expressing cancer cells, and its cytotoxicity is mediated by a remarkably rapid cleavage of GRP78/BiP. Systemic delivery of EGF-SubA results in a significant inhibition of human breast and prostate tumor xenografts in mouse models. Furthermore, EGF-SubA dramatically increases the sensitivity of cancer cells to the ER stress-inducing drug thapsigargin, and vice versa, demonstrating the first example of mechanism-based synergism in the action of a cytotoxin and an ER-targeting drug.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2767218PMC
http://dx.doi.org/10.1593/neo.09878DOI Listing

Publication Analysis

Top Keywords

cancer cells
12
endoplasmic reticulum
8
stress-inducing drug
8
epidermal growth
8
growth factor
8
protein
5
chaperone-targeting cytotoxin
4
cytotoxin endoplasmic
4
reticulum stress-inducing
4
drug synergize
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!