The potent hepatocarcinogen 3-methoxy-4-aminoazobenzene (3-MeO-AAB) has been reported to be bioactivated to mutagenic intermediates by rat liver microsomal cytochrome P450 (P450) and to be a selective inducer of rat P450IA2. In this study we have further investigated the roles of individual rat and human P450 enzymes in the bioactivation of this hepatocarcinogen in a Salmonella typhimurium TA1535/pSK1002 system where umu response is indicative of DNA damage. 3-MeO-AAB was found to be bioactivated by liver microsomal enzymes from rats and humans in this assay system. The liver microsomal activities are increased by pretreatment of rats with various P450 inducers such as phenobarbital (PB), beta-naphthoflavone (BNF), dexamethasone (DEX), acetone, ethanol, isoniazid (INH), diphenylhydantoin and valproic acid, and can be inhibited considerably by SKF-525A and metyrapone. alpha-Naphthoflavone (ANF) is also an inhibitor for the reaction catalyzed in BNF-treated rats, but stimulated the microsomal activity in DEX-treated rats. Evidence has also been obtained that specific antibodies raised against P450IIB1, P450IA1 or IA2, P450IIE1, and P450IIIA2 inhibited the activation in liver microsomes from rats pretreated with PB, BNF, INH and DEX respectively, suggesting the possible roles of several P450 enzymes in the bioactivation of 3-MeO-AAB. The results obtained with reconstituted monooxygenase systems containing various rat P450 enzymes are highly supportive of this conclusion. Human liver microsomal activation of 3-MeO-AAB was also inhibited to various extents by antibodies raised against P450IA2, P450MP, P450IIE1 and P450IIIA4. In a reconstituted system containing purified forms of human P450, P450IA2 was the most active in catalyzing 3-MeO-AAB, followed by P450IIIA4 and P450MP. ANF, a known activator of P450IIIA-catalyzed reactions, caused an increase in activation of 3-MeO-AAB in human liver microsomal and P450IIIA4- and P450MP-containing reconstituted systems. From these results it is concluded that multiple P450 enzymes in rat and human liver microsomes are involved in the bioactivation of 3-MeO-AAB, regardless of its selective induction of the rat P450IA2 gene.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/carcin/12.1.133 | DOI Listing |
Drug Metab Dispos
February 2025
State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, China. Electronic address:
HD561, which was designed to enhance nerve growth, was re-engineered into HD56, a carboxylic acid ester prodrug. The goal of this study was to compare the druggability, species differences, and the correlation between in vitro and in vivo transformation of HD56 to HD561 from a pharmacokinetic (PK) perspective, offering a scientific basis for HD56's clinical research. The bidirectional transmembrane transport of HD56 and HD561 was investigated using Caco-2 cells and LLC-PK1 cells overexpressing MDR1 monolayer cells.
View Article and Find Full Text PDFPsychol Med
March 2025
Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK.
Background: In major depressive disorder (MDD), only ~35% achieve remission after first-line antidepressant therapy. Using UK Biobank data, we identify sociodemographic, clinical, and genetic predictors of antidepressant response through self-reported outcomes, aiming to inform personalized treatment strategies.
Methods: In UK Biobank Mental Health Questionnaire 2, participants with MDD reported whether specific antidepressants helped them.
Biotechnol Adv
March 2025
Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China. Electronic address:
Terpenoids, also known as isoprenoids, represent the largest and most structurally diverse family of natural products, and their biosynthesis is closely related to cytochrome P450 enzymes (P450s). Given the limitations of direct extraction from natural resources, such as low productivity and environmental concerns, heterologous expression of P450s in microbial cell factories has emerged as a promising, efficient, and sustainable strategy for terpenoid production. The yeast expression system is a preferred selection for terpenoid synthesis because of its inner membrane system, which is required for eukaryotic P450 expression, and the inherent mevalonate pathway providing precursors for terpenoid synthesis.
View Article and Find Full Text PDFDrug Metab Dispos
February 2025
Pharmacokinetics, Dynamics, and Metabolism, Pfizer Inc, Groton, Connecticut.
Quantifying proteins involved in the absorption, distribution, metabolism, and excretion (ADME) of drugs is essential to improve understanding of their disposition and pharmacokinetics. Proteomics, because of its great versatility, is a widely used approach for protein analysis. However, existing protocols face challenges, such as poor peptide identification in liquid chromatography with tandem mass spectrometry under multiple reaction monitoring mode as well as the time- and labor-intensive nature of detergent-engaged workflows.
View Article and Find Full Text PDFBMC Med Genomics
March 2025
Department of Molecular Biology, The Fourth Hospital of Hebei Medical University, NO.12 JianKang Road, Shijiazhuang, 050011, Hebei, China.
Purpose: The objective of this study was to elucidate the relationship between two single nucleotide polymorphisms (SNPs) rs7176005 and rs6493497 in CYP19 gene and the risk of polycystic ovary syndrome (PCOS) in Northern Chinese women.
Methods: In this case-control study, a total of 340 women with PCOS and 340 matched healthy controls were recruited. Polymerase chain reaction ligase detection reaction (PCR-LDR) method was used to investigate two SNPs (rs7176005 and rs6493497) in the 5'-flanking region of CYP19 gene exon 1.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!