Dual-cladding photonic crystal fibers (PCFs) with two zero-dispersion points are used to enhance the two-photon excited luminescence (TPL) response from fluorescent protein biomarkers and neuron activity reporters in dye-cell experiments and in in vivo work on transgenic mice and tadpoles. The soliton transmission of ultrashort pulses through a PCF suppresses dispersion-induced temporal pulse spreading, maintaining a high level of field intensity needed for efficient TPL excitation. The soliton self-frequency shift, stabilized against laser power fluctuations by a specific PCF dispersion design, is employed to accurately match the wavelength of the soliton PCF output with the two-photon absorption spectrum of dye or fluorescent protein biomarker molecules, enhancing their TPL response and allowing the laser damage of biotissues to be avoided.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.34.003373 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!