Impaired secretion of glucagon-like peptide 1 (GLP-1) has been suggested to contribute to the deficient incretin effect in patients with type 2 diabetes mellitus (T2DM). Recent studies, however, have not always supported this notion. Since Japanese patients with T2DM usually have severe impairment in the earlyphase of insulin secretion, the measurement of incretin secretions in Japanese T2DM patients would be useful for assessing the association between incretin levels and insulin secretion. We conducted an oral glucose tolerance test (75 g) (OGTT) and meal tolerance test (480 kcal) (MTT) for subjects with normal glucose tolerance (NGT, n=12), subjects with impaired glucose tolerance (IGT, n=7), and T2DM patients (n=21). The tests were carried out over 120-min study periods on separate occasions. Intact GLP-1, GIP, and dipeptidyl peptidase (DPP)-IV were measured by ELISA. T2DM exhibited an impaired early phase of insulin secretion and a reduction in glucagon suppression. There were no significant differences in GLP-1 or GIP levels at each sampling time among NGT, IGT, and T2DM after the ingestions; hence the incremental areas under the curve (IAUC) for the three groups were quite similar. The levels of DPP-IV, a limiting enzyme for the degradation of incretins, were comparable among the three groups. The GLP-1-IAUC was not correlated with IAUCs of insulin, C-peptide, or glucagon determined by the OGTT or the MTT. We concluded that intact GLP-1 levels are comparable between non-diabetics and T2DM, suggesting that impaired insulin secretion in Japanese T2DM is not attributable to defect in GLP-1 secretion.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1507/endocrj.k09e-269 | DOI Listing |
Adv Biotechnol (Singap)
February 2024
CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200030, China.
Pichia pastoris is a popular yeast host for high-level heterologous expression of proteins on an industrial scale owing to its reliable expression, robust growth, high fermentation density, and easy genetic manipulation and cultivation at a relatively low cost. Of particular interest is its high secretion efficiency for small proteins including insulin, human serum albumin, vaccines, enzymes, and llama-derived heavy-chain only antibodies (nanobodies) for pharmaceutical and research applications. However, a recurring challenge in using P.
View Article and Find Full Text PDFCell Tissue Res
January 2025
Diabetes Research Center, Qatar Biomedical Research Institute (QBRI), Qatar Foundation (QF), Hamad Bin Khalifa University (HBKU), Doha, Qatar.
Impaired insulin secretion contributes to the pathogenesis of type 1 diabetes mellitus through autoimmune destruction of pancreatic β-cells and the pathogenesis of severe forms of type 2 diabetes mellitus through β-cell dedifferentiation and other mechanisms. Replenishment of malfunctioning β-cells via islet transplantation has the potential to induce long-term glycemic control in the body. However, this treatment option cannot widely be implemented in clinical due to healthy islet donor shortage.
View Article and Find Full Text PDFFront Vet Sci
January 2025
College of Veterinary Medicine, China Agricultural University, Beijing, China.
Cows with high body condition scores experience more severe negative energy balance (NEB) and undergo mobilization of more body fat during the peripartum period, leading to more production of nonesterified fatty acids (NEFA) and -hydroxybutyric acid (BHBA). Postpartum insulin secretion is lower, and insulin resistance is stronger in obese cows. Exogenous insulin supplementation has been hypothesized as a key approach for regulating NEFA in these cows.
View Article and Find Full Text PDFCell Transplant
January 2025
Diabetes Research Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
Compared to primary pancreatic islets, insulinoma cell-derived 3D pseudoislets offer a more accessible, consistent, renewable, and widely applicable model system for optimization and mechanistic studies in type 1 diabetes (T1D). Here, we report a simple and efficient method for generating 3D pseudoislets from MIN6 and NIT-1 murine insulinoma cells. These pseudoislets are homogeneous in size and morphology (~150 µm), exhibit functional glucose-stimulated insulin secretion (GSIS) up to 18 days (NIT-1) enabling long-term studies, are produced in high yield [>35,000 Islet Equivalence from 30 ml culture], and are suitable for both and studies, including for encapsulation studies.
View Article and Find Full Text PDFSci Rep
January 2025
Key Laboratory for Stem Cells and Tissue Engineering Ministry of Education, Guangdong Provincial Key Laboratory of Brain Function and Disease, Institute of Spinal Cord Injury, Department of Histology and Embryology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China.
Neuromuscular diseases usually manifest as abnormalities involving motor neurons, neuromuscular junctions, and skeletal muscle (SkM) in postnatal stage. Present in vitro models of neuromuscular interactions require a long time and lack neuroglia involvement. Our study aimed to construct rodent bioengineered spinal cord neural network-skeletal muscle (NN-SkM) assembloids to elucidate the interactions between spinal cord neural stem cells (SC-NSCs) and SkM cells and their biological effects on the development and maturation of postnatal spinal cord motor neural circuits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!