Williams-Beuren syndrome-associated transcription factor TFII-I regulates osteogenic marker genes.

J Biol Chem

Programs in Genetics, Tufts University School of Medicine, Boston, Massachusetts 02111; Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts 02111; Programs in Immunology, Tufts University School of Medicine, Boston, Massachusetts 02111. Electronic address:

Published: December 2009

Williams-Beuren syndrome (WBS), an autosomal dominant genetic disorder, is characterized by a unique cognitive profile and craniofacial defects. WBS results from a microdeletion at the chromosomal location 7q11.23 that encompasses the genes encoding the members of TFII-I family of transcription factors. Given that the haploinsufficiency for TFII-I is causative to the craniofacial phenotype in humans, we set out to analyze the effect of post-transcriptional silencing of TFII-I during BMP-2-driven osteoblast differentiation in the C2C12 cell line. Our results show that TFII-I plays an inhibitory role in regulating genes that are essential in osteogenesis and intersects with the bone-specific transcription factor Runx2 and the retinoblastoma protein, pRb. Identification of pathways regulated by TFII-I family transcription factors may begin to shed light on the molecular determinants of WBS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2794739PMC
http://dx.doi.org/10.1074/jbc.C109.063115DOI Listing

Publication Analysis

Top Keywords

transcription factor
8
tfii-i family
8
family transcription
8
transcription factors
8
tfii-i
6
williams-beuren syndrome-associated
4
transcription
4
syndrome-associated transcription
4
factor tfii-i
4
tfii-i regulates
4

Similar Publications

Group A basic leucine zipper (bZIP) transcription factors play critical roles in abscisic acid (ABA) signaling and plant development. In Arabidopsis thaliana, these factors are defined by a highly conserved core bZIP domain, and four conserved domains throughout their length: three at the N-terminus (C1 to C3) and a phosphorylatable C-terminal SAP motif located at the C4 domain. Initially, members such as ABI5 and ABFs were studied for their roles in ABA signaling during seed germination or stress responses.

View Article and Find Full Text PDF

Protocol for the generation of HLF+ HOXA+ human hematopoietic progenitor cells from pluripotent stem cells.

STAR Protoc

January 2025

Institute for Stem Cell Biology & Regenerative Medicine, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA. Electronic address:

Hematopoietic stem cells (HSCs) generate blood and immune cells. Here, we present a protocol to differentiate human pluripotent stem cells (hPSCs) into hematopoietic progenitors that express the signature HSC transcription factors HLF, HOXA5, HOXA7, HOXA9, and HOXA10. hPSCs are dissociated, seeded, and then sequentially differentiated into posterior primitive streak, lateral mesoderm, artery endothelium, hemogenic endothelium, and hematopoietic progenitors through the sequential addition of defined, serum-free media.

View Article and Find Full Text PDF

Atherosclerosis risk is elevated in diabetic patients, but the underlying mechanism such as the involvement of macrophages remains unclear. Here, we investigated the underlying mechanism related to the pro-inflammatory activation of macrophages in the development of diabetic atherosclerosis. Bioinformatics tools were used to analyze the macrophage-related transcriptome differences in patients with atherosclerosis and diabetic mice.

View Article and Find Full Text PDF

BACKGROUND Cleidocranial dysplasia (CCD) is a rare (1: 1 000 000) autosomal dominant congenital skeletal dysplasia characterized by widely patent calvarial sutures, clavicular hypoplasia, supernumerary teeth, and short stature. Only a minority of the cases are diagnosed early after birth. We present another case of proven CCD presenting with typical neonatal phenotype to promote awareness of this rare disorder.

View Article and Find Full Text PDF

Tongue squamous cell carcinoma (TSCC) is a common malignant oral cancer characterized by substantial invasion, a high rate of lymph node and distant metastasis, and a high recurrence rate. This study aims to provide new ideas for the diagnosis and treatment of TSCC patients by exploring the related mechanisms that affect the migration and invasion of TSCC and inhibit the migration and spread of cancer cells. The results indicated the rate of high expression of IL-17 in cancer tissues was greater than that in tongue tissues, and the expression of IL-17 was related to the TNM stage.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!