Trans-sialidases catalyze the transfer of a sialic acid from one sialoside to an acceptor to form a new sialoside. alpha2,3-Trans-sialidase activity was initially discovered in the parasitic protozoan Trypanosoma cruzi, and more recently was found in a multifunctional Pasteurella multocida sialyltransferase PmST1. alpha2,8-Trans-sialidase activity was also described for a multifunctional Campylobacter jejuni sialyltransferase CstII. We report here the discovery of the alpha2,6-trans-sialidase activity of a previously reported recombinant truncated bacterial alpha2,6-sialyltransferase from Photobacterium damsela (Delta15Pd2,6ST). This is the first time that the alpha2,6-trans-sialidase activity has ever been identified. Kinetic studies indicate that Delta15Pd2,6ST-catalyzed trans-sialidase reaction follows a ping-pong bi-bi reaction mechanism. Cytidine 5'-monophosphate, the product of sialyltransferase reactions, is not required by the trans-sialidase activity of the enzyme but enhances the trans-sialidase activity modestly as a non-essential activator. Using chemically synthesized Neu5AcalphapNP and LacbetaMU, alpha2,6-linked sialoside Neu5Acalpha2,6LacbetaMU has been obtained in one-step in high yield using the trans-sialidase activity of Delta15Pd2,6ST. In addition to the alpha2,6-trans-sialidase activity, Delta15Pd2,6ST also has alpha2,6-sialidase activity. The multifunctionality is thus a common feature of many bacterial sialyltransferases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800248 | PMC |
http://dx.doi.org/10.1093/glycob/cwp172 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!