We investigated the effects of including kinematic constraints in the analysis of knee kinematics from skin markers and compared the result to simultaneously recorded trajectories of bone pin markers during gait of six healthy subjects. The constraint equations that were considered for the knee were spherical and revolute joints, which have been frequently used in musculoskeletal modelling. In the models, the joint centres and joint axes of rotations were optimised from the skin marker trajectories over the trial. It was found that the introduction of kinematic constraints did not reduce the error associated with soft tissue artefacts. The inclusion of a revolute joint constraint showed a statistically significant increase in the mean flexion/extension joint angle error and no statistically significant change for the two other mean joint angle errors. The inclusion of a spherical joint showed a statistically significant increase in the mean flexion/extension and abduction/adduction errors. In addition, when a spherical joint was included, a statistically significant increase in the sum of squared differences between measured marker trajectories and the trajectories of the pin markers in the models was seen. From this, it was concluded that both more advanced knee models as well as models of soft tissue artefacts should be developed before accurate knee kinematics can be calculated from skin markers.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbiomech.2009.08.034DOI Listing

Publication Analysis

Top Keywords

soft tissue
12
tissue artefacts
12
knee kinematics
12
statistically increase
12
kinematic constraints
8
skin markers
8
pin markers
8
marker trajectories
8
increase flexion/extension
8
joint angle
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!