Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Dysfunction of adenosinergic systems has been implicated in the development of multiple sclerosis in humans and experimental autoimmune encephalomyelitis (EAE) in animals. Caffeine, a non-selective antagonist of adenosine receptors, has been shown to provide protection against myelin oligodendroglia glycoprotein (MOG)-induced EAE in mice. In this study, we showed that chronic caffeine similarly imparts neuroprotection against EAE induced in rats by guinea pig spinal cord homogenates (GPSCH). GPSCH-induced EAE is characterized by extensive tissue inflammation with a typical chronic disease course. We showed that caffeine decreases the incidence of EAE and attenuates EAE pathology at behavioral, histological (inflammatory cell infiltration and demyelination) and neurochemical (expression of inflammatory cytokines) levels. The attenuation of GPSCH-induced pathology by chronic caffeine treatment was observed at doses of 10 and 30 mg/kg and during both peak and recovery phases of EAE. Furthermore, it was showed that chronic treatment with caffeine up-regulated A1 receptor and TGF-beta mRNAs and suppressed interferon-gamma mRNA in EAE rats. Together with previous reports, our data demonstrates that chronic treatment with caffeine exerts a neuroprotective effect against EAE, possibly through an A(1) receptor-mediated shift from Th1 to Th2 cell function, and provides a neurobiological basis for epidemiological investigation into the possible relationship between caffeine consumption and development of multiple sclerosis in humans.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.brainres.2009.10.054 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!