Tranilast is an anti-inflammatory drug in use for asthma and atopic dermatitis. In studies over the last decade it has been revealed that tranilast can reduce fibrosis occurring in the kidney during diabetes, thereby delaying and/or preventing kidney dysfunction. We report a structure-activity study aimed at optimizing the antifibrotic activity of tranilast. A series of cinnamoyl anthranilates were prepared and assessed for their ability to prevent TGF-beta-stimulated production of collagen in cultured renal mesangial cells. We reveal derivatives with improved potency and reduced cellular toxicity relative to tranilast. 3-Methoxy-4-propargyloxycinnamoyl anthranilate reduces albuminuria in a rat model of progressive diabetes, and thus has potential as an innovative treatment for diabetic nephropathy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmcl.2009.09.120 | DOI Listing |
Int J Mol Sci
January 2025
College of Physical Education, Shanghai University, Shanghai 200444, China.
Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Second Department of Cardiology, Hippokration General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece.
Atrial fibrosis is a hallmark of atrial cardiomyopathy and plays a pivotal role in the pathogenesis of atrial fibrillation (AF), contributing to its onset and progression. The mechanisms underlying atrial fibrosis are multifaceted, involving stretch-induced fibroblast activation, oxidative stress, inflammation, and coagulation pathways. Variations in fibrosis types-reactive and replacement fibrosis-are influenced by patient-specific factors such as age, sex, and comorbidities, complicating therapeutic approaches.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, College of Medicine, Korea University, Seoul 02841, Republic of Korea.
The protein therapeutics market, including antibody and fusion proteins, has experienced steady growth over the past decade, underscoring the importance of optimizing amino acid sequences. In our previous study, we developed a fusion protein, R31, which combines retinol-binding protein (RBP) with albumin domains IIIA and IB, linked by a sequence (AAAA), and includes an additional disulfide bond (N227C-V254C) in IIIA. This fusion protein effectively inhibited hepatic stellate cell activation.
View Article and Find Full Text PDFLancet Rheumatol
January 2025
US Department of Veterans Affairs (VA) Nebraska-Western Iowa Health Care System, Omaha, NE, USA; University of Nebraska Medical Center, Omaha, NE, USA.
Background: Uncertainty exists regarding patient outcomes when using TNF inhibitors versus other biological and targeted synthetic disease-modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis-associated interstitial lung disease (ILD). We compared survival and respiratory hospitalisation outcomes following initiation of TNF-inhibitor or non-TNF inhibitor biological or targeted synthetic DMARDs for treatment of rheumatoid arthritis-associated ILD.
Methods: We did a retrospective, active-comparator, new-user, observational cohort study with propensity score matching following the target trial emulation framework using US Department of Veterans Affairs (VA) electronic and administrative health records.
Phytother Res
January 2025
Laboratory of Molecular NeuroTherapeutics, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli, Uttar Pradesh, India.
Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!