Evaluation and optimization of antifibrotic activity of cinnamoyl anthranilates.

Bioorg Med Chem Lett

School of Chemistry, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia.

Published: December 2009

Tranilast is an anti-inflammatory drug in use for asthma and atopic dermatitis. In studies over the last decade it has been revealed that tranilast can reduce fibrosis occurring in the kidney during diabetes, thereby delaying and/or preventing kidney dysfunction. We report a structure-activity study aimed at optimizing the antifibrotic activity of tranilast. A series of cinnamoyl anthranilates were prepared and assessed for their ability to prevent TGF-beta-stimulated production of collagen in cultured renal mesangial cells. We reveal derivatives with improved potency and reduced cellular toxicity relative to tranilast. 3-Methoxy-4-propargyloxycinnamoyl anthranilate reduces albuminuria in a rat model of progressive diabetes, and thus has potential as an innovative treatment for diabetic nephropathy.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bmcl.2009.09.120DOI Listing

Publication Analysis

Top Keywords

antifibrotic activity
8
cinnamoyl anthranilates
8
evaluation optimization
4
optimization antifibrotic
4
activity cinnamoyl
4
tranilast
4
anthranilates tranilast
4
tranilast anti-inflammatory
4
anti-inflammatory drug
4
drug asthma
4

Similar Publications

Fibrosis represents a terminal pathological manifestation encountered in numerous chronic diseases. The process involves the persistent infiltration of inflammatory cells, the transdifferentiation of fibroblasts into myofibroblasts, and the excessive deposition of extracellular matrix (ECM) within damaged tissues, all of which are characteristic features of organ fibrosis. Extensive documentation exists on fibrosis occurrence in vital organs such as the liver, heart, lungs, kidneys, and skeletal muscles, elucidating its underlying pathological mechanisms.

View Article and Find Full Text PDF

Atrial fibrosis is a hallmark of atrial cardiomyopathy and plays a pivotal role in the pathogenesis of atrial fibrillation (AF), contributing to its onset and progression. The mechanisms underlying atrial fibrosis are multifaceted, involving stretch-induced fibroblast activation, oxidative stress, inflammation, and coagulation pathways. Variations in fibrosis types-reactive and replacement fibrosis-are influenced by patient-specific factors such as age, sex, and comorbidities, complicating therapeutic approaches.

View Article and Find Full Text PDF

The protein therapeutics market, including antibody and fusion proteins, has experienced steady growth over the past decade, underscoring the importance of optimizing amino acid sequences. In our previous study, we developed a fusion protein, R31, which combines retinol-binding protein (RBP) with albumin domains IIIA and IB, linked by a sequence (AAAA), and includes an additional disulfide bond (N227C-V254C) in IIIA. This fusion protein effectively inhibited hepatic stellate cell activation.

View Article and Find Full Text PDF

Background: Uncertainty exists regarding patient outcomes when using TNF inhibitors versus other biological and targeted synthetic disease-modifying antirheumatic drugs (DMARDs) in rheumatoid arthritis-associated interstitial lung disease (ILD). We compared survival and respiratory hospitalisation outcomes following initiation of TNF-inhibitor or non-TNF inhibitor biological or targeted synthetic DMARDs for treatment of rheumatoid arthritis-associated ILD.

Methods: We did a retrospective, active-comparator, new-user, observational cohort study with propensity score matching following the target trial emulation framework using US Department of Veterans Affairs (VA) electronic and administrative health records.

View Article and Find Full Text PDF

Background And Aim: Hepatic encephalopathy (HE) is a complex neurological disorder in individuals with liver diseases, necessitating effective neuroprotective interventions to alleviate its adverse outcomes. Berberine (BBR), a natural compound with well-established anti-fibrotic and neuroprotective properties, has not been extensively studied in the context of glial activation under hyperammonaemic conditions. This study evaluates the neuroprotective potential of BBR in a thioacetamide (TAA)-induced HE rat model, focusing on its effects on glial activation and NLRP3 inflammasome signalling.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!