Wear resistance is still perceived to be one of the most important limiting factors in the long-term performance of dental restorations. Consequently, a range of different materials have been used as filler particles to reduce the rate of wear, particularly in posterior restorations. In this study, novel bioactive glass-ceramic powders exhibiting different nominal calcium-mica to fluorapatite ratios were used as fillers for light-cured dental composites. Wear tests on the resulting samples were undertaken using a micro-tribometer with a linear reciprocating ball-on-flat geometry using lubrication from artificial saliva. The surfaces of the worn composites were then evaluated using optical microscopy. In order to enhance matrix bonding, the surfaces of the different particulates were treated using hydrofluoric acid to provide a porous surface and the resulting surface morphology was evaluated using scanning electron microscopy. Although in the case of the samples containing low fluorapatite contents (20 wt%; A2), surface etching enhanced the wear resistance of the composite, etching reduced the wear resistance of materials containing 50 wt% fluorapatite (A5). The reduction in wear resistance was attributed to the friability of the A5 particles following surface treatment. This suggests that in order to optimize wear resistance, it is important to find a critical balance between surface roughness and porosity and the strength of individual particles.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jmbbm.2009.04.004 | DOI Listing |
J Esthet Restor Dent
January 2025
Department of Prosthodontics, Propaedeutics and Dental Materials, School of Dentistry, Christian-Albrechts University at Kiel, Kiel, Germany.
Objective: Investigation of the mechanical properties of occlusal veneers made from zirconia with varying translucency, bonded to different tooth substrates.
Materials And Methods: Sixty-four extracted molars were divided into two groups: preparation within enamel (E) or extending into dentin (D). Veneers were milled from four zirconia ceramics (n = 8): 5Y-TZP (HT), a multilayer of 5 and 3Y-TZP (GT), 3Y-TZP (LT), and 4Y-TZP (MT).
ACS Appl Mater Interfaces
January 2025
Material, Physical and Chemical Sciences Center, Sandia National Laboratories, Albuquerque, New Mexico 87123, United States.
MoS coatings are used extensively in aerospace and defense applications due to their ultralow friction and high wear resistance. Burnished and resin-bonded MoS coatings are commonly used in these applications due to simplicity in deposition and history of use, despite issues with consistency in coating properties and performance. Physical vapor deposition (PVD) of MoS thin films has emerged as a process alternative in the past 50 years, promising far greater control over film structure and composition but at a greater cost.
View Article and Find Full Text PDFJ Orthod Sci
November 2024
Department of Orthodontics, College of Dentistry, University of Baghdad, Iraq.
Objectives: As patients are instructed to wear thermoplastic retainers for the rest of their lives, the durability of the materials is a critical factor in evaluating whether the expense is justified. This study examined the physical and mechanical properties of three different thermoplastic retainer materials before and after thermoforming (BT and AT).
Materials And Methods: Clear Advantage Series I, Clear Advantage Series II, and Leone types were used, with each material having a thickness of 1 mm.
Adv Healthc Mater
January 2025
School of Mechanical and Mining Engineering, University of Queensland, Brisbane, QLD4072, Australia.
The significance of biomedical applications of Ti alloys is best emphasized by their widespread utilization as implantable materials, such as internal supports and bone replacements. Ti alloys are sensitive to fretting wear, which leads to the early failure of Ti implants. Improved wear resistance of such implants is essential to ensure a prolonged implant life.
View Article and Find Full Text PDFWater Res
December 2024
Department of Civil, Construction, and Environmental Engineering, San Diego State University, San Diego, CA 92182, USA. Electronic address:
Tire tread particles are microplastics (< 5 mm) and leach organic chemicals into aquatic environments. It is important to understand the behavior of tire wear compounds in sunlight-exposed waters in terms of their persistence, removal, and transformation. Therefore, we conducted photolysis experiments with leachates from laboratory-generated tire tread particles (TTP) over 72 h in a solar simulator to evaluate the behavior of leached compounds and fluorescent components over time.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!