Background: Coronary artery occlusion and reperfusion may trigger reversible and irreversible ischemic and reperfusion injury. The primary aim of this study was to evaluate protein release into the myocardium in a porcine model during ischemia and reperfusion to search for clarifying models for reperfusion injury and secondarily to investigate release and production of the immunophilins FKBP12/12.6 in this model and in cell cultures.

Methods: In a porcine model local myocardial ischemia was induced during 45min followed by 120min of reperfusion. Microdialysis samples from ischemic and non-ischemic areas were analyzed with surface-enhanced laser desorption ionization (SELDI) mass spectrometry (MS) and Western blotting (WB). Myocardial biopsies from areas at risk and control areas were analyzed with reverse transcription polymerase chain reaction (RT-PCR). Myocardial cell cultures from mice (HL-1 cells) were exposed to hypoxia and then analyzed with WB and RT-PCR.

Results: FK binding protein12 (FKBP12), ubiquitin and myoglobin were identified as being released during ischemia and reperfusion in microdialysates. RT-PCR analysis on the biopsies after ischemia revealed a non-significant increase in mRNA expression of FKBP12 and a significant increase in mRNA expression of FKBP12.6. Lysates from HL-1 cells exposed to hypoxia demonstrated increase of FKBP12 and a significant increase in mRNA expression of FKBP12.6.

Conclusion: In a myocardial ischemic-reperfusion porcine model as well as in hypoxic HL-1 cells, release of FKBP12 and increased production of FKBP12.6 was demonstrated. The findings indicate important mechanisms related to these immunophilins in the reaction to ischemia/hypoxia and reperfusion in the heart.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2009.10.140DOI Listing

Publication Analysis

Top Keywords

ischemia reperfusion
12
porcine model
12
hl-1 cells
12
increase mrna
12
mrna expression
12
release fkbp12
8
fkbp12 increased
8
increased production
8
production fkbp126
8
reperfusion
8

Similar Publications

Assembly of Genetically Engineered Ionizable Protein Nanocage-based Nanozymes for Intracellular Superoxide Scavenging.

Nat Commun

January 2025

Key Laboratory of Bioactive Materials for the Ministry of Education, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, and Frontier of Science Center for Cell Response, Nankai University, Tianjin, 300071, China.

Nanozymes play a pivotal role in mitigating excessive oxidative stress, however, determining their specific enzyme-mimicking activities for intracellular free radical scavenging is challenging due to endo-lysosomal entrapment. In this study, we employ a genetic engineering strategy to generate ionizable ferritin nanocages (iFTn), enabling their escape from endo-lysosomes and entry into the cytoplasm. Specifically, ionizable repeated Histidine-Histidine-Glutamic acid (9HE) sequences are genetically incorporated into the outer surface of human heavy chain FTn, followed by the assembly of various chain-like nanostructures via a two-armed polyethylene glycol (PEG).

View Article and Find Full Text PDF

Introduction: ST-elevation myocardial infarction (STEMI) is one of the most prevalent presentations in young patients. It is essential to emphasise that each minute of delay in providing medical care is negatively correlated to the patient's prognosis. The present study was carried out to evaluate the ischaemia-reperfusion times in patients ≤40 years of age versus individuals >40 years of age and their association with mortality and major adverse cardiac event (MACE) over the long term.

View Article and Find Full Text PDF

Effects of Electroacupuncture Per-Conditioning at Huantiao on Motor Function Recovery in Acute Cerebral Ischemia Mice.

Physiol Behav

January 2025

Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Department of Rehabilitation Medicine, Huashan Hospital, Fudan University, Shanghai, 200040, China. Electronic address:

Background: Continuous electroacupuncture pre-conditioning (EPRC) and post-conditioning (EPOC) effectively improve motor dysfunction after acute cerebral ischemia, but they require multiple treatments. Recently, electroacupuncture per-conditioning (EPEC) has demonstrated neuroprotective effects, indicating that this single-session intervention has short-term efficacy.

Objective: To evaluate the effect of EPEC at Huantiao (GB30) on motor recovery in acute cerebral ischemia mice.

View Article and Find Full Text PDF

In patients with acute myocardial infarction (AMI), thrombolytic therapy and revascularization strategies allow complete recanalization of occluded epicardial coronary arteries. However, approximately 35% of patients still experience myocardial ischemia/reperfusion (I/R) injury, which contributing to increased AMI mortality. Therefore, an accurate understanding of myocardial I/R injury is important for preventing and treating AMI.

View Article and Find Full Text PDF

The UCP2/PINK1/LC3b-mediated mitophagy is involved in the protection of NRG1 against myocardial ischemia/reperfusion injury.

Redox Biol

January 2025

Department of Anesthesiology, Beijing Friendship Hospital, Capital Medical University, Beijing, China; Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, China. Electronic address:

Available evidence indicates that neuregulin-1 (NRG-1) can provide a protection against myocardial ischemia/reperfusion (I/R) injury and is involved in various cardioprotective interventions by potential regulation of mitophagy. However, the molecular mechanisms linking NRG-1 and mitophagy remain to be clarified. In this study, both an in vivo myocardial I/R injury model of rats and an in vitro hypoxia/reoxygenation (H/R) model of H9C2 cardiomyocytes were applied to determine whether NRG-1 postconditioning attenuated myocardial I/R injury through the regulation of mitophagy and to explore the underlying mechanisms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!