Somatosensory stimuli elicit complex cortical responses that are discernible as somatosensory evoked potentials (SEPs) in scalp electroencephalographic recordings. Whereas earlier SEP components, occurring up to 100 ms after stimulus delivery, have been labeled 'preconscious', later responses have been associated with stimulus awareness. To date, how far these processes are primarily cortical or comprise additional subcortical operations remains open. Therefore, we recorded thalamic and scalp SEPs evoked by perceived as well as unperceived median nerve stimulation in neurosurgical patients with electrodes implanted into the ventral intermediate nucleus of the thalamus for deep brain stimulation. At stimulation intensities below perceptual threshold, only thalamic SEP components appeared consistently during the first 75 ms after stimulus delivery. Stimulation that was perceived by the patients elicited cortical as well as thalamic SEPs that lasted longer than 75 ms. These results indicate that the thalamus remains active after the primary propagation of a sensory signal to the cortex, and suggest that the transition from elementary to higher-order somatosensory processing is based on thalamo-cortical interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1460-9568.2009.06970.x | DOI Listing |
Transl Stroke Res
January 2025
Department of Rehabilitation Sciences, KU Leuven, B-3001, Leuven, Belgium.
Electroencephalogram (EEG) during pinprick stimulation has the potential to unveil neural mechanisms underlying sensorimotor impairments post-stroke. A proof-of-concept study explored event-related peak pinprick amplitude and oscillatory responses in healthy controls and in people with acute and subuacute motor and sensorimotor stroke, their relationship, and to what extent EEG somatosensory responses can predict sensorimotor impairment. In this study, 26 individuals participated, 10 people with an acute and early subacute sensorimotor stroke, 6 people with an acute and early subacute motor stroke, and 10 age-matched controls.
View Article and Find Full Text PDFJ Pers Med
January 2025
E.N. Meshalkin National Medical Research Center, Ministry of Health of the Russian Federation, 15 Rechkunovskaya St., Novosibirsk 630055, Russia.
Sensory evoked potentials (EPs), namely, somatosensory, visual, and brainstem acoustic EPs, are used in neurosurgery to monitor the corresponding functions with the aim of preventing iatrogenic neurological complications. Functional deficiency usually precedes structural defect, being initially reversible, and prompt alarms may help surgeons achieve this aim. However, sensory EP registration requires presenting multiple stimuli and averaging of responses, which significantly lengthen this procedure.
View Article and Find Full Text PDFSci Rep
January 2025
Neurocomputation and Neuroimaging Unit (NNU), Freie Universität Berlin, Berlin, Germany.
We are not only passively immersed in a sensorial world, but we are active agents that directly produce stimulations. Understanding what is unique about sensory consequences can give valuable insight into the action-perception-cycle. Sensory attenuation is the phenomenon that self-produced stimulations are perceived as less intense compared to externally-generated ones.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Department of Physics, Virginia Commonwealth University, Richmond, VA, 23284, USA; Institute for Sustainable Energy and Environment, Virginia Commonwealth University, Richmond, VA, 23284, USA. Electronic address:
Wearable devices designed for the somatosensory system aim to provide event-cue feedback electronics and therapeutic stimulation to the peripheral nervous system. This prompts a neurological response that is relayed back to the central nervous system. Unlike virtual reality tools, these devices precisely target peripheral mechanoreceptors by administering specific stimuli.
View Article and Find Full Text PDFFront Neural Circuits
January 2025
Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kanagawa, Japan.
Introduction: Motor-imagery-based Brain-Machine Interface (MI-BMI) has been established as an effective treatment for post-stroke hemiplegia. However, the need for long-term intervention can represent a significant burden on patients. Here, we demonstrate that motor imagery (MI) instructions for BMI training, when supplemented with somatosensory stimulation in addition to conventional verbal instructions, can help enhance MI capabilities of healthy participants.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!