We show that the learned vocalizations of male and female large-billed crows (Corvus macrorhynchos) are similar and that their functions and physical features show significant differences from those of other oscine species. We investigate whether the song control nuclei of crows show any sexual differences in size, reflecting differences in their singing behavior, and whether these nuclei are different from those of other songbirds in terms of neural connectivity size and relative to the forebrain. Our Nissl staining results reveal that 1) of the four song nuclei examined (HVC; the robust nucleus of the arcopallium [RA]; Area X; and the dorsolateral medial nucleus [DLM]), HVC, RA, and Area X volumes are significantly larger in males than in females, but DLM volume and body and brain weights show no significant gender differences; and 2) the sizes of song nuclei relative to the forebrain are within the range of other oscines. By injecting a neural tract tracer (DiI) into various song nuclei in brain slices, we found that, as in other songbirds, HVC projects to RA and Area X, while Area X projects to the lateral magnocellular nucleus of the anterior nidopallium (IMAN) and DLM, DLM to IMAN, and IMAN to RA. Our results Indicate that, although the crow has songs very different from those of other oscine species, Its song nuclei and the connections between them are not obviously different.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2108/zsj.26.771 | DOI Listing |
Brain Struct Funct
January 2025
CHRIST (Deemed to be University), Bangalore, Karnataka, India.
In this investigation, we delve into the neural underpinnings of auditory processing of Sanskrit verse comprehension, an area not previously explored by neuroscientific research. Our study examines a diverse group of 44 bilingual individuals, including both proficient and non-proficient Sanskrit speakers, to uncover the intricate neural patterns involved in processing verses of this ancient language. Employing an integrated neuroimaging approach that combines functional connectivity-multivariate pattern analysis (fc-MVPA), voxel-based univariate analysis, seed-based connectivity analysis, and the use of sparse fMRI techniques to minimize the interference of scanner noise, we highlight the brain's adaptability and ability to integrate multiple types of information.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea.
Serum response factor (SRF) is a master transcription factor that regulates immediate early genes and cytoskeletal remodeling genes. Despite its importance, the mechanisms through which SRF stably associates with its cognate promoter remain unknown. Our biochemical and protein-induced fluorescence enhancement analyses showed that the binding of SRF to serum response element was significantly increased by inositol polyphosphate multikinase (IPMK), an SRF cofactor.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305.
A central paradigm of nonequilibrium physics concerns the dynamics of heterogeneity and disorder, impacting processes ranging from the behavior of glasses to the emergent functionality of active matter. Understanding these complex mesoscopic systems requires probing the microscopic trajectories associated with irreversible processes, the role of fluctuations and entropy growth, and the timescales on which nonequilibrium responses are ultimately maintained. Approaches that illuminate these processes in model systems may enable a more general understanding of other heterogeneous nonequilibrium phenomena, and potentially define ultimate speed and energy cost limits for information processing technologies.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Laser Fusion Research Center, China Academy of Engineering Physics, Mianyang 621900, China.
The ultraprecision machining of diamond presents certain difficulties due to its extreme hardness. However, the graphitization modification can enhance its machinability. This work presents an investigation into the characteristics of the graphitization modification in polycrystalline diamond induced by a nanosecond pulsed laser.
View Article and Find Full Text PDFBioengineering (Basel)
November 2024
Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
Exosomes are extracellular nanovesicles secreted by cells that efficiently deliver therapeutic cargo for cancer treatment. However, because exosomes are present in low quantities and have limited target specificity, internal and external stress stimulation has been studied to increase exosome efficiency. Inspired by these studies, the uptake efficiency of cobalt chloride-induced hypoxic cancer cell-secreted exosomes was evaluated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!