Universal convergence of the specific volume changes of globular proteins upon unfolding.

Biochemistry

Department of Biology and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, New York 12180, USA.

Published: November 2009

Both pressure and temperature are important environmental variables, and to obtain a complete understanding of the mechanisms of protein folding, it is necessary to determine how protein stability is dependent on these fundamental thermodynamic parameters. Although the temperature dependence of protein stability has been widely explored, the dependence of protein stability on pressure is not as well studied. In this paper, we report the results of the direct thermodynamic determination of the change in specific volume (DeltaV/V) upon protein unfolding, which defines the pressure dependence of protein stability, for five model proteins (ubiquitin, eglin c, ribonuclease A, lysozyme, and cytochrome c). We have shown that the specific volumetric changes upon unfolding for four of the proteins (ubiquitin, eglin c, ribonuclease A, and lysozyme) appear to converge to a common value at high temperatures. Analysis of various contributions to the change in volume upon protein unfolding allowed us to put forth the hypothesis that the change in volume due to hydration is very close to zero at this temperature, such that DeltaV/V is defined largely by the total volume of cavities and voids within a protein, and that this is a universal property of all small globular proteins without prosthetic groups. To test this hypothesis, additional experiments were performed with variants of eglin c that had site-directed substitutions at two buried positions, to create an additional cavity in the protein core. The results of these experiments, coupled with the structural analysis of cytochrome c showing a lower packing density compared to those of the other four proteins, provided further support for the hypothesis. Finally, we have shown that the deviation of the high-temperature DeltaV value of a given protein from the convergence value can be used to determine the size of the excess cavities in globular proteins.

Download full-text PDF

Source
http://dx.doi.org/10.1021/bi901220uDOI Listing

Publication Analysis

Top Keywords

protein stability
16
globular proteins
12
dependence protein
12
protein
10
specific volume
8
protein unfolding
8
proteins ubiquitin
8
ubiquitin eglin
8
eglin ribonuclease
8
ribonuclease lysozyme
8

Similar Publications

Machine learning and molecular docking prediction of potential inhibitors against dengue virus.

Front Chem

December 2024

African Society for Bioinformatics and Computational Biology, Cape Town, South Africa.

Introduction: Dengue Fever continues to pose a global threat due to the widespread distribution of its vector mosquitoes, and . While the WHO-approved vaccine, Dengvaxia, and antiviral treatments like Balapiravir and Celgosivir are available, challenges such as drug resistance, reduced efficacy, and high treatment costs persist. This study aims to identify novel potential inhibitors of the Dengue virus (DENV) using an integrative drug discovery approach encompassing machine learning and molecular docking techniques.

View Article and Find Full Text PDF

Exploring oncogenic roles and clinical significance of EZH2: focus on non-canonical activities.

Ther Adv Med Oncol

January 2025

Department of Molecular Biology of Cancer, Medical University of Lodz, Mazowiecka 6/8, Lodz 92-215, Poland.

The enhancer of zeste homolog 2 (EZH2) is a catalytic component of Polycomb repressive complex 2 (PRC2) mediating the methylation of histone 3 lysine 27 (H3K27me3) and hence the epigenetic repression of target genes, known as canonical function. Growing evidence indicates that EZH2 has non-canonical roles that are exerted as PRC2-dependent and PRC2-independent methylation of non-histone proteins, and methyltransferase-independent interactions of EZH2 with various proteins contributing to gene expression regulation and alterations in the protein stability. is frequently mutated and/or its expression is deregulated in various cancer types.

View Article and Find Full Text PDF

PPTC7 is a mitochondrial phosphatase that is essential for mitochondrial biogenesis, metabolism, protein content maintenance and transport. While the mitochondrial roles of PPTC7 are well-characterized, its roles outside the mitochondria are unclear. Here we identified a non-mitochondrial role for PPTC7 in regulating epidermal growth factor receptor (EGFR) trafficking.

View Article and Find Full Text PDF

HERC5/ISG15 Enhances Glioblastoma Stemness and Tumor Progression by mediating SERBP1protein stability.

Neuromolecular Med

January 2025

Department of Neurosurgery, Henan Provincial People's Hospital, No. 7 Weiwu Road, Zhengzhou, 450003, Henan Province, China.

Glioblastoma (GBM) is the most common malignant brain tumor, and has a low survival rate and a poor prognosis. Intensive studies of pathogenic mechanisms are essential for exploring therapeutic targets for GBM. In this study, the roles played by interferon-stimulated gene 15 (ISG15), HECT, RCC1-containing protein 5 (HERC5), and SERPINE1 mRNA binding protein 1 (SERBP1) in regulating GBM cell stemness were investigated.

View Article and Find Full Text PDF

Bromodomain-containing protein 4 (BRD4) plays a vital role in fibrosis of various organs. However, the underlying mechanism of BRD4 in renal fibrosis remains unclear. To construct in vitro and in vivo models of renal fibrosis, TCMK-1 cells were subjected to TGF-β1 treatment and mice were subjected to UUO surgery and adenine induction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!