Consider a single agent capable of diagnosing cancer, treating it simultaneously and monitoring response to treatment. Particles of this agent would seek cancer cells accurately and destroy them without harming normal surrounding cells. Science fiction or reality? Nanotechnology and nanomedicine are rapidly growing fields that encompass the creation of materials and devices at atomic, molecular and supramolecular level, for potential clinical use. Advances in nanotechnology are bringing us closer to the development of dual and multi-functional nanoparticles that are challenging the traditional distinction between diagnostic and treatment agents. Examples include contrast agents capable of delivering targeted drugs to specific epithelial receptors. This opens the way for targeted chemotherapy which could minimise systemic side-effects, avoid damage to benign tissues and also reduce the therapeutic treatment dose of a drug required. Most of the current research is still at the pre-clinical stage, with very few instances of bench to bedside research. In order to encourage more translational research, a fundamental change is required to consider the current clinical challenges and then look at ways in which nanotechnology can address these.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11523-009-0118-9 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!