The intensity of light radiated from a fiber-optic light tap is observed to depend sensitively on the phase difference between LP(01) and LP(02) modes in a few-mode fiber. This observation is used to design a novel dual-mode interferometer in which light loss through the light tap is monitored, eliminating the need for a bulky spatial filter at the exit end of the fiber. Application of the device as an interferometric temperature sensor is described.

Download full-text PDF

Source
http://dx.doi.org/10.1364/ol.21.001020DOI Listing

Publication Analysis

Top Keywords

light tap
12
loss light
8
light
5
lp01-lp02 interferometric
4
interferometric fiber-optic
4
fiber-optic sensing
4
sensing phase-dependent
4
phase-dependent loss
4
tap intensity
4
intensity light
4

Similar Publications

Gut Colonization of Zebrafish Larvae Induces a Dampened Sensorimotor Response.

Biomedicines

January 2025

Department of Biochemistry, Microbiology, and Immunology, Wayne State University, Detroit, MI 48201, USA.

Cholera is a diarrheal disease prevalent in populations without access to clean water. Cholera is caused by which colonizes the upper small intestine in humans once ingested. A growing number of studies suggest that the gut microbiome composition modulates animal behavior.

View Article and Find Full Text PDF

TAP-MS analysis of FACT interactions and regulation by a ubiquitin ligase, San1.

Biochim Biophys Acta Gene Regul Mech

January 2025

Department of Biochemistry and Molecular Biology, Southern Illinois University School of Medicine, Carbondale IL-62901, USA. Electronic address:

An evolutionarily conserved heterodimeric FACT (Facilitates chromatin transcription) regulates transcription, DNA repair, replication and other cellular processes via its interactions with other proteins. FACT is recently found to be regulated via ubiquitylation and 26S proteasomal degradation, alteration of which is associated with aberrant transcription and genome integrity. However, there has not been a systematic study to analyze FACT interactions proteome-wide in the presence and absence of its UPS (Ubiquitin-proteasome system) regulation, which could reveal new FACT interactors with mechanistic and functional implications.

View Article and Find Full Text PDF

Visible-Light Photo-Iniferter Polymerization of Molecularly Imprinted Polymers for Direct Integration with Nanotransducers.

Small Methods

January 2025

Laboratory of Analytical Chemistry, Department of Biological and Environmental Sciences and Technologies (Di.S.Te.B.A.), University of Salento, via Monteroni, Lecce, 73100, Italy.

Molecularly Imprinted Polymers (MIPs) have gained prominence as synthetic receptors, combining simplicity of synthesis with robust molecular recognition akin to antibodies and enzymes. One of their main application areas is chemical sensing. However, direct integration of MIPs with nanostructured transducers, crucial for enhancing sensing capabilities and broadening MIPs sensing applications, remains limited.

View Article and Find Full Text PDF

Anions play a crucial role in various environmental, chemical, and biological processes. Among various anions, the production of perchlorate (ClO ) ion is expected to rise in upcoming years, and thus, an efficient method for the detection of perchlorate ion is highly desirable. In this effort, a pyridyl-benzimidazole-based luminescent probe (RSB1) containing two N-H donor sites has been synthesized for selective detection of perchlorate ion.

View Article and Find Full Text PDF

Synchronization of auditory-hand tapping coupling: the effect of aging.

Exp Brain Res

January 2025

Center of Advanced Technologies in Rehabilitation, Sheba Medical Center, Ramat Gan, Israel.

Hand(s)-tapping tasks have been extensively studied in order to characterize the features of sensorimotor synchronization (SMS). These tasks frequently require participants to synchronize their tapping pace to an external, metronome-like sound. The impact of ageing on SMS abilities remains mainly unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!