A new approach to improving the stability of erbium-doped fiber lasers is presented. By use of a model based on ion-pair effects, spiking behavior is shown to be effectively suppressed by resonant pumping when the pump wavelength is sufficiently close to the lasing wavelength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.21.000734 | DOI Listing |
Sci Rep
January 2025
Institute of Electro-Optical Engineering, National Taipei University of Technology, Taipei, 10608, Taiwan.
In this paper, we demonstrated a novel bidirectional high-speed transmission system integrating a free-space optical (FSO) communication with a 5G wireless link, utilizing a high-power erbium-doped fibre amplifier (EDFA) for enhanced loss compensation. The system supports downlink rates of 1-Gb/s/4.5-GHz and 10-Gb/s at 24-GHz and 39-GHz, and an uplink rate of 10-Gb/s/28-GHz.
View Article and Find Full Text PDFLasers Med Sci
December 2024
University of Zurich, Zurich, Switzerland.
Laser-activated irrigation (LAI) of root canal systems depends on the generation of cavitation bubbles in the endodontic irrigant. Physical studies thus far focused on pulse energy, pulse length, frequency, and fiber tip shape, mostly in plain water. This study investigated the effect of endodontically relevant molecules (sodium hypochlorite (NaOCl), 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), and their combination) in water on physical properties of the resulting solution, and their impact on primary cavitation bubble features.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Computing, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si 13120, Republic of Korea.
In the dynamic landscape of the tech industry, the escalating requirement for swift and secure data transmission has catalyzed innovation in integrated communication systems. Free-Space Optics (FSOs) has emerged as a promising contender in optical communications. While conventional optical fiber systems can achieve bit rates of up to 40 Gbps with proper design, they are limited primarily by electronics rather than semiconductor laser capabilities.
View Article and Find Full Text PDFNanophotonics
April 2024
School of Information Science and Engineering, Key Laboratory of Laser and Infrared System of Ministry of Education, Shandong University, Qingdao 266237, China.
Amorphous aerogels with the microscopic nanoscale three-dimensional meshes provide superb platforms for investigating unique physicochemical properties. In order to enhance the physical, thermal and mechanical performances, one efficient and common approach is integrating diverse functional materials. Herein, we report a simple strategy to fabricate the amorphous silicon doped YO aerogels with the post-gelation method under the N/EtOH supercritical atmosphere.
View Article and Find Full Text PDFModern commercial erbium-doped fibers are limited in their doping concentrations due to the tendency of Er ions to cluster in silicate glasses. Clustering inevitably leads to ion quenching, one major obstacle preventing erbium-doped fibers (EDFs) from scaling to higher laser power near 15XX nm. Here, we present a new, to our knowledge, method for doping erbium into fibers through the use of Er:BaF nanoparticle (NP) precursors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!