Renal dendritic cells ameliorate nephrotoxic acute kidney injury.

J Am Soc Nephrol

Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, Pennsylvania, PA, USA.

Published: January 2010

Inflammation contributes to the pathogenesis of acute kidney injury. Dendritic cells (DCs) are immune sentinels with the ability to induce immunity or tolerance, but whether they mediate acute kidney injury is unknown. Here, we studied the distribution of DCs within the kidney and the role of DCs in cisplatin-induced acute kidney injury using a mouse model in which DCs express both green fluorescence protein and the diphtheria toxin receptor. DCs were present throughout the tubulointerstitium but not in glomeruli. We used diphtheria toxin to deplete DCs to study their functional significance in cisplatin nephrotoxicity. Mice depleted of DCs before or coincident with cisplatin treatment but not at later stages experienced more severe renal dysfunction, tubular injury, neutrophil infiltration and greater mortality than nondepleted mice. We used bone marrow chimeric mice to confirm that the depletion of CD11c-expressing hematopoietic cells was responsible for the enhanced renal injury. Finally, mixed bone marrow chimeras demonstrated that the worsening of cisplatin nephrotoxicity in DC-depleted mice was not a result of the dying or dead DCs themselves. After cisplatin treatment, expression of MHC class II decreased and expression of inducible co-stimulator ligand increased on renal DCs. These data demonstrate that resident DCs reduce cisplatin nephrotoxicity and its associated inflammation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2799272PMC
http://dx.doi.org/10.1681/ASN.2009040407DOI Listing

Publication Analysis

Top Keywords

acute kidney
16
kidney injury
16
cisplatin nephrotoxicity
12
dcs
10
dendritic cells
8
diphtheria toxin
8
cisplatin treatment
8
bone marrow
8
injury
6
kidney
5

Similar Publications

The photo-induced CO-releasing properties of the dark-stable complex [RuCl(CO)L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines.

View Article and Find Full Text PDF

Only a few studies have examined the effects of coronavirus disease 2019 (COVID-19) and influenza on clinical outcomes in pediatric patients. Furthermore, no meta-analysis has assessed the impact of these diseases on adverse outcomes. This study aims to compare the clinical outcomes of COVID-19 and influenza in pediatric patients.

View Article and Find Full Text PDF

Snakebite is a neglected public health problem in tropical countries. Snakebite envenomation-associated acute kidney injury (SBE-AKI) is a major complication accounting for significant morbidity and mortality. The pathogenesis of SBE-AKI may be multifactorial, including prerenal AKI secondary to hemodynamic alterations, intrinsic renal injury, immune-related mechanisms, venom-induced consumptive coagulopathy and capillary leak syndrome.

View Article and Find Full Text PDF

Snakebite-associated acute kidney injury (AKI) poses a significant health burden in the South Asia region, resulting in considerable morbidity and mortality. Multiple factors contribute to the pathogenesis of AKI following snakebites, including hypotension, intravascular haemolysis, disseminated intravascular coagulation, rhabdomyolysis, thrombotic microangiopathy (TMA) and direct nephrotoxicity. Clinical features manifest as anuria, oliguria, haematuria, abdominal pain and hypertension.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!