Studies in humans and monkeys report widespread multisensory interactions at or near primary visual and auditory areas of neocortex. The range and scale of these effects has prompted increased interest in interconnectivity between the putatively "unisensory" cortices at lower hierarchical levels. Recent anatomical tract-tracing studies have revealed direct projections from auditory cortex to primary visual area (V1) and secondary visual area (V2) that could serve as a substrate for auditory influences over low-level visual processing. To better understand the significance of these connections, we looked for reciprocal projections from visual cortex to caudal auditory cortical areas in macaque monkeys. We found direct projections from area prostriata and the peripheral visual representations of area V2. Projections were more abundant after injections of temporoparietal area and caudal parabelt than after injections of caudal medial belt and the contiguous areas near the fundus of the lateral sulcus. Only one injection was confined to primary auditory cortex (area A1) and did not demonstrate visual connections. The projections from visual areas originated mainly from infragranular layers, suggestive of a "feedback"-type projection. The selective localization of these connections to peripheral visual areas and caudal auditory cortex suggests that they are involved in spatial localization.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2882821 | PMC |
http://dx.doi.org/10.1093/cercor/bhp213 | DOI Listing |
J Exp Psychol Hum Percept Perform
January 2025
School of Psychology, University of Sussex.
Human listeners have a remarkable capacity to adapt to severe distortions of the speech signal. Previous work indicates that perceptual learning of degraded speech reflects changes to sublexical representations, though the precise format of these representations has not yet been established. Inspired by the neurophysiology of auditory cortex, we hypothesized that perceptual learning involves changes to perceptual representations that are tuned to acoustic modulations of the speech signal.
View Article and Find Full Text PDFAudiol Res
January 2025
Neurology Department, Kafrelsheikh University Hospitals, Kafr Elsheikh 33516, Egypt.
Unlabelled: Peripheral hearing loss is associated with the cross-modal re-organization of the auditory cortex, which can occur in both pre- and post-lingual deaf cases.
Background/objectives: Whether to rely on the visual cues in cases with severe hearing loss with adequate amplification is a matter of debate. So, this study aims to study visual evoked potentials (VEPs) in children with severe or profound HL, whether fitted with HAs or CIs.
Neurosurg Focus Video
January 2025
Department of Neurosurgery.
Surgically remediable epilepsy of the eloquent brain poses the added challenge of preserving function while curing disease. Long-standing epileptogenic lesions have tenacious seizure networks and significant functional reorganizations. Large multilobar lesions may involve multiple functional areas, thereby challenging the limits of functional brain mapping.
View Article and Find Full Text PDFNat Commun
January 2025
Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA.
While animals readily adjust their behavior to adapt to relevant changes in the environment, the neural pathways enabling these changes remain largely unknown. Here, using multiphoton imaging, we investigate whether feedback from the piriform cortex to the olfactory bulb supports such behavioral flexibility. To this end, we engage head-fixed male mice in a multimodal rule-reversal task guided by olfactory and auditory cues.
View Article and Find Full Text PDFPLoS One
January 2025
Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brazil.
Background And Objective: One of the functions attributed to the auditory efferent system is related to the processing of acoustic stimuli in noise backgrounds. However, clinical implications and the neurophysiological mechanisms of this system are not yet understood, especially on higher regions of the central nervous system. Only a few researchers studied the effects of noise on cortical auditory evoked potentials (CAEP), but the lack of studies in this area and the contradictory results, especially in children, point to the need to investigate different protocols and parameters that could allow the study of top-down activity in humans.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!