The breast and ovarian cancer suppressor protein BRCA2 controls the RAD51 recombinase in reactions that lead to homologous DNA recombination (HDR). BRCA2 binds RAD51 via eight conserved BRC repeat motifs of approximately 35 amino acids, each with a varying capacity to bind RAD51. BRC repeats both promote and inhibit RAD51 assembly on different DNA substrates to regulate HDR, but the structural basis for these functions is unclear. Here, we demarcate two tetrameric clusters of hydrophobic residues in the BRC repeats, interacting with distinct pockets in RAD51, and show that the co-location of both modules within a single BRC repeat is necessary for BRC-RAD51 binding and function. The two modules comprise the sequence FxxA, known to inhibit RAD51 assembly by blocking the oligomerization interface, and a previously unrecognized tetramer with the consensus sequence LFDE, which binds to a RAD51 pocket distinct from this interface. The LFDE motif is essential in BRC repeats for modes of RAD51 binding both permissive and inhibitory to RAD51 oligomerization. Targeted insertion of point mutations in RAD51 that disrupt the LFDE-binding pocket impair its assembly at DNA damage sites in living cells. Our findings suggest a model for the modular architecture of BRC repeats that provides fresh insight into the mechanisms regulating homologous DNA recombination.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2800230PMC
http://dx.doi.org/10.1093/nar/gkp873DOI Listing

Publication Analysis

Top Keywords

brc repeats
20
rad51
11
rad51 recombinase
8
homologous dna
8
dna recombination
8
binds rad51
8
brc repeat
8
inhibit rad51
8
rad51 assembly
8
assembly dna
8

Similar Publications

Toxoplasma gondii from Gabonese forest, Central Africa: First report of an African wild strain.

PLoS Negl Trop Dis

January 2025

Inserm U1094, IRD UMR270, Univ. Limoges, CHU Limoges, EpiMaCT - Epidemiology of Chronic Diseases in Tropical Zone, Institute of Epidemiology and Tropical Neurology, OmegaHealth, Limoges, France.

The protozoan Toxoplasma gondii is a ubiquitous and highly prevalent parasite that can theoretically infect all warm-blooded vertebrates. In humans, toxoplasmosis causes infections in both immunodeficient and immunocompetent patients, congenital toxoplasmosis, and ocular lesions. These manifestations have different degrees of severity.

View Article and Find Full Text PDF

Tumor suppressor BRCA2 executes homologous recombination to repair DNA double-strand breaks in collaboration with RAD51, involving exon 11 and 27. Exon 11 constitutes a region where pathogenic variants (PVs) accumulate, and mutations in this region are known to contribute to carcinogenesis. However, the impact of the heterozygous PVs of BRCA2 exon 11 on the life quality beyond cancer risk, including male fertility, remains unclear.

View Article and Find Full Text PDF

Mechanism-free repurposing of drugs for C9orf72-related ALS/FTD using large-scale genomic data.

Cell Genom

November 2024

Neuromuscular Diseases Research Section, National Institute on Aging, National Institutes of Health (NIH), Bethesda, MD 20892, USA; Department of Neurology, Johns Hopkins University Medical Center, Baltimore, MD 21287, USA; Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, University College London, London WC1N 1PJ, UK; National Institute of Neurological Disorders and Stroke (NINDS), NIH, Bethesda, MD 20892, USA; RNA Therapeutics Laboratory, National Center for Advancing Translational Sciences (NCATS), NIH, Rockville, MD 20850, USA. Electronic address:

Article Synopsis
  • Repeat expansions in the C9orf72 gene are a leading genetic cause of ALS and frontotemporal dementia, but understanding how this mutation causes neuron death is still unclear, complicating the search for effective therapies.
  • Researchers analyzed data from over 41,000 ALS and healthy samples to identify potential treatments, discovering that acamprosate, a drug used for other conditions, might be repurposed for C9orf72-related diseases.
  • Their findings demonstrated that acamprosate has neuroprotective properties in cell models and works similarly well as the current treatment, riluzole, showing the potential of using genomic data to find new drug applications.
View Article and Find Full Text PDF

Homologous recombination (HR) is an important mechanism for repairing DNA double-strand breaks (DSBs) and preserving genome integrity. Pathogenic mutations in the HR proteins BRCA2 and the RAD51 paralogs predispose individuals to breast, ovarian, pancreatic, and prostate cancer. The RAD51 paralogs: RAD51B, RAD51C, RAD51D, XRCC2, and XRCC3 form two complexes RAD51B-RAD51C-RAD51D-XRCC2 (BCDX2) and RAD51C-XRCC3 (CX3).

View Article and Find Full Text PDF

BRCA2 stabilises RAD51 and DMC1 nucleoprotein filaments through a conserved interaction mode.

Nat Commun

September 2024

Wellcome Centre for Cell Biology, Institute of Cell Biology, University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh, UK.

BRCA2 is essential for DNA repair by homologous recombination in mitosis and meiosis. It interacts with recombinases RAD51 and DMC1 to facilitate the formation of nucleoprotein filaments on resected DNA ends that catalyse recombination-mediated repair. BRCA2's BRC repeats bind and disrupt RAD51 and DMC1 filaments, whereas its PhePP motifs bind recombinases and stabilise their nucleoprotein filaments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!