Penumbra, the basis of neuroimaging in acute stroke treatment: current evidence.

J Neurol Sci

Department of Neurology, University of Missouri-Healthcare Columbia, Columbia, CE 507 Five Hospital Drive, Columbia, Missouri 65212, USA.

Published: January 2010

In modern medicine brain imaging is an essential prerequisite not only to acute stroke triage but also to determining the specific therapy indicated. This article reviews the need for imaging the brain in acute stroke, penumbral pathophysiology, penumbral imaging techniques, as well as current status of various imaging modalities that are being employed to select patients for specific therapeutic approaches.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jns.2009.09.027DOI Listing

Publication Analysis

Top Keywords

acute stroke
12
penumbra basis
4
basis neuroimaging
4
neuroimaging acute
4
stroke treatment
4
treatment current
4
current evidence
4
evidence modern
4
modern medicine
4
medicine brain
4

Similar Publications

Safety and efficacy of tirofiban in the endovascular treatment of intracranial aneurysms: a systematic evaluation and meta-analysis.

Neurosurg Rev

January 2025

Hengyang Key Laboratory of Hemorrhagic Cerebrovascular Disease, Department of Neurosurgery, the Second Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421000, Hunan, China.

Patients with intracranial aneurysms (IA) undergoing endovascular treatment face varying risks and benefits when tirofiban is used for thromboprophylaxis during surgery. Currently, there is a lack of high-level evidence summarizing this information. This study aims to conduct a systematic review and meta-analysis to evaluate the efficacy and safety of tirofiban during endovascular treatment of IA.

View Article and Find Full Text PDF

Analysis of the symmetry of the brain hemispheres at the level of individual structures and dominant tissue features has been the subject of research for many years in the context of improving the effectiveness of imaging methods for the diagnosis of brain tumor, stroke, and Alzheimer's disease, among others. One useful approach is to reliably determine the midline of the brain, which allows comparative analysis of the hemispheres and uncovers information on symmetry/asymmetry in the relevant planes of, for example, CT scans. Therefore, an effective method that is robust to various geometric deformations, artifacts, varying noise characteristics, and natural anatomical variability is sought.

View Article and Find Full Text PDF

Purpose: Atrial fibrillation (AF) is the most common chronic cardiac arrhythmia that increases the risk of stroke, primarily due to thrombus formation in the left atrial appendage (LAA). Left atrial appendage occlusion (LAAO) devices offer an alternative to oral anticoagulation for stroke prevention. However, the complex and variable anatomy of the LAA presents significant challenges to device design and deployment.

View Article and Find Full Text PDF

Cognitive resilience (CR) describes the phenomenon of individuals evading cognitive decline despite prominent Alzheimer's disease neuropathology. Operationalization and measurement of this latent construct is non-trivial as it cannot be directly observed. The residual approach has been widely applied to estimate CR, where the degree of resilience is estimated through a linear model's residuals.

View Article and Find Full Text PDF

Ultraprecision multi-axis CARIC control strategy with application to a nano-accuracy air-bearing motion stage.

ISA Trans

January 2025

State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China; Beijing Key Laboratory of Transformative High-end Manufacturing Equipment and Technology, Tsinghua University, Beijing, 100084, China. Electronic address:

Multi-axis contouring control is crucial for ultraprecision manufacturing industries, contributing to meeting the ever-increasingly stringent performance requirements. In this article, a novel contouring adaptive real-time iterative compensation (CARIC) method is proposed to achieve extreme multi-axis contouring accuracy, remarkable trajectory generalization, disturbance rejection, and parametric adaptation simultaneously. Specifically, control actions generated by CARIC consist of robust feedback, adaptive feedforward, and online trajectory compensation components.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!