The presynaptic active zone is composed of a protein network that contains ELKS2alpha (a.k.a. CAST) as a central component. Here we demonstrate that in mice, deletion of ELKS2alpha caused a large increase in inhibitory, but not excitatory, neurotransmitter release, and potentiated the size, but not the properties, of the readily-releasable pool of vesicles at inhibitory synapses. Quantitative electron microscopy revealed that the ELKS2alpha deletion did not change the number of docked vesicles or other ultrastructural parameters of synapses, except for a small decrease in synaptic vesicle numbers. The ELKS2alpha deletion did, however, alter the excitatory/inhibitory balance and exploratory behaviors, possibly as a result of the increased synaptic inhibition. Thus, as opposed to previous studies indicating that ELKS2alpha is essential for mediating neurotransmitter release, our results suggest that ELKS2alpha normally restricts release and limits the size of the readily-releasable pool of synaptic vesicles at the active zone of inhibitory synapses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785857PMC
http://dx.doi.org/10.1016/j.neuron.2009.09.019DOI Listing

Publication Analysis

Top Keywords

neurotransmitter release
12
inhibitory synapses
12
active zone
8
readily-releasable pool
8
elks2alpha deletion
8
elks2alpha
6
elks2alpha/cast deletion
4
deletion selectively
4
selectively increases
4
increases neurotransmitter
4

Similar Publications

Chlorpyrifos (CPF) is an organophosphorus pesticide of concern because many in vivo animal studies have demonstrated developmental toxicity exerted by this substance; however, despite its widespread use, evidence from epidemiological studies is still limited. In this study, we have collected all the information generated in the twenty-first century on the developmental toxicity of CPF using new approach methodologies. We have critically evaluated and integrated information coming from 70 papers considering human, rodent, avian and fish models.

View Article and Find Full Text PDF

Effect of Esketamine on Cognitive Recovery After Propofol Sedation for Outpatient Colonoscopy: A Randomized Clinical Trial.

Drug Des Devel Ther

January 2025

Department of Anesthesiology, Shengli Clinical Medical College of Fujian Medical University, Fujian Provincial Hospital, Fuzhou, Fujian, People's Republic of China.

Purpose: While esketamine shows promise as an adjunct in procedural sedation, its impact on postoperative cognitive recovery remains incompletely characterized. This study investigated the effects of esketamine on multiple dimensions of recovery, particularly cognition, in patients undergoing colonoscopy with propofol-based sedation.

Patients And Methods: We conducted this randomized, double-blinded, placebo-controlled trial from January 6, 2023, to May 20, 2024, at two hospitals in China.

View Article and Find Full Text PDF

Fast-scan cyclic voltammetry (FSCV) is a widely used electrochemical technique to measure the phasic response of neurotransmitters in the brain. It has the advantage of reducing tissue damage to the brain due to the use of carbon fiber microelectrodes as well as having a high temporal resolution (10 Hz) sufficient to monitor neurotransmitter release in vivo. During the FSCV experiment, the surface of the carbon fiber microelectrode is inevitably changed by the fouling effect.

View Article and Find Full Text PDF

Proteins' flexibility is a feature in communicating changes in cell signaling instigated by binding with secondary messengers, such as calcium ions, associated with the coordination of muscle contraction, neurotransmitter release, and gene expression. When binding with the disordered parts of a protein, calcium ions must balance their charge states with the shape of calcium-binding proteins and their versatile pool of partners depending on the circumstances they transmit. Accurately determining the ionic charges of those ions is essential for understanding their role in such processes.

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!