Rabbit kidney cell cultures stimulated with either double-stranded polyinosinate-polycytidylate (poly I:poly C) or with ultraviolet-irradiated Newcastle disease virus (UV-NDV) produce two types of interferon response, designated "early" and "late," respectively. The early response is suppressed by inhibitors of RNA or protein synthesis and is therefore thought to represent de novo synthesis of interferon. Circumstantial evidence suggested that this interferon response is regulated by a translation control mechanism. Late interferon production with poly I:poly C only took place in the presence of inhibitors of RNA or protein synthesis. The late interferon is therefore likely to be derived by the activation of an interferon precursor. The stimulation of late poly I:poly C-induced interferon production by cycloheximide suggested the existence of a second, posttranslational level of control of interferon production. This posttranslation control seems to be activated by interferon. UV-NDV can probably suppress the synthesis of the posttranslation inhibitory protein, and therefore it stimulates a late interferon response in the absence of inhibitors of RNA or protein synthesis. It is postulated that both the translation and posttranslation inhibitor participate in the development of a cellular refractory state to repeated interferon stimulation. The picture of interferon which emerges from this study is one of a heterogenous class of proteins whose production is controlled by cellular repressors acting at various levels.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2225870PMC
http://dx.doi.org/10.1085/jgp.56.1.76DOI Listing

Publication Analysis

Top Keywords

interferon production
16
interferon
13
poly ipoly
12
interferon response
12
inhibitors rna
12
rna protein
12
protein synthesis
12
late interferon
12
production
5
synthesis
5

Similar Publications

Unlabelled: Although fish possess an effective interferon (IFN) system to defend against viral infection, grass carp reovirus (GCRV) still causes epidemic hemorrhagic disease and tremendous economic loss in grass carp. Therefore, it is necessary to investigate the immune escape strategies employed by GCRV. In this study, we show that the structural protein VP4 of GCRV (encoded by the S6 segment) significantly restricts IFN expression by degrading stimulator of IFN genes (STING) through the autophagy-lysosome-dependent pathway.

View Article and Find Full Text PDF

Inhibition of IFITM3 in cerebrovascular endothelium alleviates Alzheimer's-related phenotypes.

Alzheimers Dement

January 2025

Center for Geriatric Medicine, Key Laboratory of Alzheimer's Disease of Zhejiang Province, The First Affiliated Hospital and Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang, China.

Introduction: Interferon-induced transmembrane protein 3 (IFITM3) modulates γ-secretase in Alzheimer's Disease (AD). Although IFITM3 knockout reduces amyloid β protein (Aβ) production, its cell-specific effect on AD remains unclear.

Methods: Single nucleus RNA sequencing (snRNA-seq) was used to assess IFITM3 expression.

View Article and Find Full Text PDF

Background: is a gram-negative pathogen. The infection caused by this pathogen may result in gastritis and can increase the risk of gastric cancer. This study investigated the relationship between infection as the main risk factor for gastritis and changes in serum inflammatory cytokine levels.

View Article and Find Full Text PDF

Homologous recombination promotes non-immunogenic mitotic cell death upon DNA damage.

Nat Cell Biol

January 2025

Genome Integrity Unit, Children's Medical Research Institute, University of Sydney, Westmead, New South Wales, Australia.

Double-strand breaks (DSBs) can initiate mitotic catastrophe, a complex oncosuppressive phenomenon characterized by cell death during or after cell division. Here we unveil how cell cycle-regulated DSB repair guides disparate cell death outcomes through single-cell analysis of extended live imaging. Following DSB induction in S or G2, passage of unresolved homologous recombination intermediates into mitosis promotes non-immunogenic intrinsic apoptosis in the immediate attempt at cell division.

View Article and Find Full Text PDF

Unlabelled: SARS-CoV-2 infection induces interferon (IFN) response by plasmacytoid dendritic cells (pDCs), but the underlying mechanisms are poorly defined. Here, we show that the bulk of the IFN-I release comes from pDC sensing of infected cells and not cell-free virions. Physical contact (or conjugates) between pDCs and infected cells is mediated through CD54-CD11a engagement, and such conjugate formation is required for efficient IFN-I production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!