PROTEIN COAGULATION AND ITS REVERSAL : GLOBIN.

J Gen Physiol

Laboratories of The Rockefeller Institute for Medical Research, Princeton, N. J., and the Hospital of The Rockefeller Institute for Medical Research, New York.

Published: May 1931

1. The globin prepared from hemoglobin by the acid acetone method is denatured globin. 2. The denaturation and coagulation of globin by acid acetone are reversible. 3. Soluble globin can be obtained from the acid acetone globin even if the globin is first precipitated by trichloracetic acid or heated to 100 degrees C. 4. Hill and Holden's theory that they separated native globin from hemoglobin without any intermediate denaturation is not proven by their experiments.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2141132PMC
http://dx.doi.org/10.1085/jgp.14.5.605DOI Listing

Publication Analysis

Top Keywords

acid acetone
12
globin
8
globin globin
8
globin acid
8
protein coagulation
4
coagulation reversal
4
reversal globin
4
globin prepared
4
prepared hemoglobin
4
acid
4

Similar Publications

CtfAB from the extremely thermophilic bacterium, Thermosipho melanesiensis, has been used for in vivo acetone production up to 70°C. This enzyme has tentatively been identified as the rate-limiting step, due to its relatively low binding affinity for acetate. However, existing kinetic and mechanistic studies on this enzyme are insufficient to evaluate this hypothesis.

View Article and Find Full Text PDF

From solubility to efficiency: Per- and polyfluoroalkyl substances (PFAS) regeneration from anion exchange resins.

Sci Total Environ

January 2025

Department of Civil and Environmental Engineering, Temple University, Philadelphia, PA 19122, USA. Electronic address:

This study investigated the regenerability of anion exchange resins for per- and polyfluoroalkyl substances (PFAS), focusing on the interaction between regenerant composition and resin characteristics. The influence of salt type and concentration on PFAS solubility revealed a general decline in perfluorohexane sulfonate (PFHxS) solubility with increased salt concentrations, most strongly with KCl followed by NaCl and NHCl. Mixed solubility results were observed for perfluorooctanoate (PFOA) and perfluorooctane sulfonate (PFOS).

View Article and Find Full Text PDF

The Synthesis, Crystal Structure, Modification, and Cytotoxic Activity of α-Hydroxy-Alkylphosphonates.

Molecules

January 2025

Department of Organic Chemistry and Technology, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., 1111 Budapest, Hungary.

A series of α-hydroxy-alkylphosphonates and α-hydroxy-alkylphosphine oxides were synthesized by the Pudovik reaction of acetaldehyde and acetone with dialkyl phosphites or diarylphosphine oxides. The additions were performed in three different ways: in liquid phase using triethylamine as the catalyst (1), on the surface of AlO/KF solid catalyst (2), or by a MW-assisted NaCO-catalyzed procedure (3). In most of the cases, our methods were more efficient and more robust than those applied in the literature.

View Article and Find Full Text PDF

Linn is a well-known African traditional herb due to its tremendous medicinal and nutritional properties. It is used worldwide for the treatment of different ailments and diseases. In the present study, the phytochemical and antioxidant activity of South African fruit pulp extracts was evaluated.

View Article and Find Full Text PDF

Combined therapies with Heat Shock Protein 90 (HSP90) inhibitors and Heat Shock Protein 70 (HSP70) inducers are gaining significant interest in cancer and cardiovascular research. Here, we tested the hypothesis that HSP90 inhibitors and HSP70 inducers, together, can block the development of pulmonary fibrosis. We exposed New Zealand White Rabbits to hydrochloric acid (HCl, 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!