Reciprocal interference between influenza A, influenza B, and swine influenza viruses has been demonstrated in the chick embryo. Certain temporal and quantitative factors which influence the production of interference in this host-virus system have been studied. The implications of these observations in relation to the mechanism by which interference is produced are discussed.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2135387 | PMC |
http://dx.doi.org/10.1084/jem.79.4.361 | DOI Listing |
J Nanobiotechnology
January 2025
College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
Background: The rapid mutation of avian influenza virus (AIV) poses a significant threat to both the poultry industry and public health. Herein, we have successfully developed an mRNA-LNPs candidate vaccine for H5 subtype highly pathogenic avian influenza and evaluated its immunogenicity and protective efficacy.
Results: In experiments on BALB/c mice, the vaccine candidate elicited strong humoral and a certain cellular immune responses and protected mice from the heterologous AIV challenge.
Sci Adv
January 2025
Department of Microbiology and Immunology, Cornell University College of Veterinary Medicine, Ithaca, NY 14853, USA.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza viruses lead to severe respiratory illnesses and death in humans, exacerbated in individuals with underlying health conditions, remaining substantial global public health concerns. Here, we developed a bivalent replication-incompetent single-cycle pseudotyped vesicular stomatitis virus vaccine that incorporates both a prefusion-stabilized SARS-CoV-2 spike protein lacking a furin cleavage site and a full-length influenza A virus neuraminidase protein. Vaccination of K18-hACE2 or C57BL/6J mouse models generated durable levels of neutralizing antibodies, T cell responses, and protection from morbidity and mortality upon challenge with either virus.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
The heterotrimeric RNA-dependent RNA polymerase (RdRp) of influenza A virus catalyzes viral RNA transcription (vRNA→mRNA) and replication (vRNA→cRNA→vRNA) by adopting different conformations. A switch from transcription to replication occurs at a relatively late stage of infection. We recently reported that the viral NS2 protein, expressed at later stages from a spliced transcript of the NS segment messenger RNA (mRNA), inhibits transcription, promotes replication and plays a key role in the transcription-to-replication switch.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Institute for Chemistry and Biochemistry, Freie Universität Berlin, Berlin 14195, Germany.
Mucus is a complex hydrogel that acts as a defensive and protective barrier in various parts of the human body. The rise in the level of viral infections has underscored the importance of advancing research into mucus-mimicking hydrogels for the efficient design of antiviral agents. Herein, we demonstrate the gram-scale synthesis of biocompatible, lignin-based virus-binding inhibitors that reduce waste and ensure long-term availability.
View Article and Find Full Text PDFVirol J
January 2025
Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China.
Infection with Influenza A virus (IAV) induces severe inflammatory responses and lung injury, contributing significantly to mortality and morbidity rates. Alterations in the microbial composition of the lungs and intestinal tract resulting from infection could influence disease progression and treatment outcomes. Xiyanping (XYP) injection has demonstrated efficacy in clinical treatment across various viral infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!