A study was made of the effect of 0.05 and 0.5 N solutions of 20 different chemicals on the activity of purified PR8 influenza virus in 0.1 M phosphate buffer. It was found by tests in chick embryos and in mice that virus activity was destroyed by strong oxidizing agents such as iodine, by salts of heavy metals, by mercurochrome, by formaldehyde, and by the detergents phemerol, roccal, and sodium dodecyl sulfate. Reducing agents appeared to have little if any inactivating effect with the exception of 0.05 N ascorbic acid. At the concentrations tested, sulfathiazole sodium exerted only a weak inactivating effect. 0.5 N phenol inactivated the virus promptly, but solutions of the strength more commonly used for bactericidal purposes were only weakly virucidal. The virus appeared relatively unaffected by glucose, ammonium sulfate, calcium chloride, sodium thiosulfate, and arginine.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2135372 | PMC |
http://dx.doi.org/10.1084/jem.79.3.291 | DOI Listing |
Science
January 2025
Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA.
Influenza virus pandemics and seasonal epidemics have claimed countless lives. Recurrent zoonotic spillovers of influenza viruses with pandemic potential underscore the need for effective countermeasures. In this study, we show that pre-exposure prophylaxis with broadly neutralizing antibody (bnAb) MEDI8852 is highly effective in protecting cynomolgus macaques from severe disease caused by aerosolized highly pathogenic avian influenza H5N1 virus infection.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
January 2025
National Clinical Research Center for Respiratory Disease, State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120, China.
The co-circulation of influenza and SARS-CoV-2 has led to co-infection events, primarily affecting children and older adults, who are at higher risk for severe disease. Although co-infection prevalence is relatively low, it is associated with worse outcomes compared to mono-infections. Previous studies have shown that the outcomes of co-infection depend on multiple factors, including viral interference, virus-host interaction and host response.
View Article and Find Full Text PDFAdv Biotechnol (Singap)
November 2024
State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.
The H9N2 subtype of avian influenza virus (AIV) causes severe immunosuppression and high mortality in view of its frequent co-infection with other pathogens, resulting in significant economic losses in the poultry industry. Current vaccines provide suboptimal immune protection against H9N2 AIV owing to antigenic variations, highlighting the urgent need for safe and effective antiviral drugs for the prevention and treatment of this virus. This study aimed to investigate the inhibitory effects of Hypericum japonicum extract on H9N2 AIV.
View Article and Find Full Text PDFmSystems
January 2025
National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China.
Respiratory disease (RD) is a worldwide leading threat to the pig industry, but there is still limited understanding of the pathogens associated with swine RD. In this study, we conducted a nationwide genomic surveillance on identifying viruses, bacteria, and antimicrobial resistance genes (ARGs) from the lungs of pigs with RD in China. By performing metatranscriptomic sequencing combined with metagenomic sequencing, we identified 21 viral species belonging to 12 viral families.
View Article and Find Full Text PDFVirus Evol
December 2024
ANSES, Ploufragan-Plouzané-Niort Laboratory, Swine Virology Immunology Unit, National Reference Laboratory for Swine Influenza, BP53, Ploufragan 22440, France.
Swine influenza A viruses (swIAVs) are a major cause of respiratory disease in pigs worldwide, presenting significant economic and health risks. These viruses can reassort, creating new strains with varying pathogenicity and cross-species transmissibility. This study aimed to monitor the genetic and antigenic evolution of swIAV in France from 2019 to 2022.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!