The pathogenic activity of vaccinia virus is in large part suppressed when it is mixed with living Kupffer cells or clasmatocytes in the test-tube and injected intradermally. Vaccinia increases in quantity when introduced into cultures of Kupffer cells in vitro, and survives in immediate association with these elements. No antiviral principle is elaborated by them under such conditions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2133642PMC
http://dx.doi.org/10.1084/jem.67.6.883DOI Listing

Publication Analysis

Top Keywords

kupffer cells
12
vaccinia virus
8
fate vaccinia
4
virus cultivation
4
cultivation vitro
4
vitro kupffer
4
cells
4
cells reticulo-endothelial
4
reticulo-endothelial cells
4
cells pathogenic
4

Similar Publications

Background/aim: Non-alcoholic fatty liver disease (NAFLD) is a global health concern with limited treatment options. The paucity of predictive   models in preclinical settings seems to be one of the limitations of identifying effective medicines. We therefore aimed to develop an   model that can display the key hallmarks of NAFLD, such as steatosis, inflammation, and fibrosis.

View Article and Find Full Text PDF

Metabolic dysfunction-associated steatotic liver disease (MASLD), previously referred to as non-alcoholic fatty liver disease, encompasses a broad range of hepatic metabolic disorders primarily characterised by the disruption of hepatic lipid metabolism, hepatic lipid accumulation and steatosis. Severe cases of MASLD might progress to metabolic dysfunction-associated steatohepatitis, characterised by hepatic inflammation, hepatocyte ballooning degeneration, activation of hepatic stellate cells (HSCs) and fibrogenesis. It may further progress to hepatocellular carcinoma.

View Article and Find Full Text PDF

Spatially restricted and ontogenically distinct hepatic macrophages are required for tissue repair.

Immunity

January 2025

Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB-UGent Center for Inflammation Research, Technologiepark-Zwijnaarde 71, Ghent 9052, Belgium; Department of Biomedical Molecular Biology, Faculty of Science, Ghent University, Ghent, Belgium. Electronic address:

Our understanding of the functional heterogeneity of resident versus recruited macrophages in the diseased liver is limited. A population of recruited lipid-associated macrophages (LAMs) has been reported to populate the diseased liver alongside resident Kupffer cells (KCs). However, the precise roles of these distinct macrophage subsets remain elusive.

View Article and Find Full Text PDF

The liver is an indispensable metabolic organ, responsible for accumulating and transporting various nutritional compounds in hepatocytes. However, the transport of these materials from the liver is an energetically intensive task because they contain a considerable number of hydrophobic components, including free cholesterol, and require specialized transfer proteins to shuttle these substances through an aqueous phase. Liver X receptors (LXRs) induce the expression of cholesterol transporters in macrophages to transport free cholesterol derived from apoptotic cells into extracellular space via high-density lipoproteins.

View Article and Find Full Text PDF

CD163 impairs HBV clearance in mice by regulating intrahepatic T cell immune response via an IL-10-dependent mechanism.

Antiviral Res

January 2025

Department of Infectious Diseases, Nanfang Hospital, Southern Medical University, State Key Laboratory of Organ Failure Research, Key Laboratory of Infectious Diseases Research in South China (Southern Medical University), Ministry of Education, Guangdong Provincial Key Laboratory for Prevention and Control of Major Liver Diseases, Guangdong Provincial Clinical Research Center for Viral Hepatitis, Guangdong Institute of Hepatology, Guangdong Provincial Research Center for Liver Fibrosis Engineering and Technology, Guangzhou, China. Electronic address:

Background & Aims: Chronic hepatitis B (CHB) arises from a persistent hepatitis B virus (HBV) infection, complicating efforts for a functional cure. Kupffer cells (KCs), liver-resident macrophages, are pivotal in mediating immune tolerance to HBV. Although CD163 marks M2-polarized KCs, its precise role in HBV infection remains unclear and warrants further investigation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!