THE BLOOD CHEMISTRY OF AN ACUTE TRYPANOSOME INFECTION.

J Exp Med

Department of Bacteriology, College of Physicians and Surgeons, Columbia University, New York.

Published: June 1930

The CO(2) capacity of the serum is markedly lowered early in infection with Trypanosoma equiperdum. The non-protein nitrogen and uric acid constituents of the blood are increased in the terminal stages. The kidneys also show terminal degenerative changes. The cholesterol remains unchanged throughout. Lecithin is markedly increased, most of the observations showing a 20 per cent to 50 per cent rise in this substance. Liver glycogen is lower than normal in the early stages and could not be demonstrated in the later stages of the infection. The blood sugar remains normal until a very late period in the disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2131871PMC
http://dx.doi.org/10.1084/jem.52.1.103DOI Listing

Publication Analysis

Top Keywords

blood chemistry
4
chemistry acute
4
acute trypanosome
4
trypanosome infection
4
infection co2
4
co2 capacity
4
capacity serum
4
serum markedly
4
markedly lowered
4
lowered early
4

Similar Publications

Multiomics unravels the complexity of male obesity: a prospective observational study.

J Transl Med

January 2025

Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Avenue de la Sallaz 8, CH-1011, Lausanne, Switzerland.

Background: Obesity is associated with varying degrees of metabolic dysfunction. In this study, we aimed to discover markers of the severity of metabolic impairment in men with obesity via a multiomics approach.

Methods: Thirty-two morbidly men with obesity who were candidates for Roux-en-Y gastric bypass (RYGB) surgery were prospectively followed.

View Article and Find Full Text PDF

A cost-effective strategy is reported utilizing ionic liquid (IL), 1-hexyl-3-methylimidazolium bisulfate ([HMIM] HSO), to delaminate TiC MXene, thereby enhancing its efficiency in electrocatalyzing tryptophan (Trp) oxidation. The positively charged IL effectively intercalates within the negatively charged MXene layers, fostering structural stability through π-π stacking and electrostatic interactions. Consequently, the resulting IL-TiC composite not only maintained the inherent electronic conductivity of TiC but also significantly augmented its electrocatalytic prowess.

View Article and Find Full Text PDF

A highly selective naphthalimide based fluorescent probe PBQ was designed for investigation of doxycycline (DOX) in various real samples. The synthesized probe PBQ showed maximum emission intensity at 395 nm and exhibited selective quenching response-based on photoinduced electron transfer (PET) mechanism even in the presence of various competing and interfering drugs, amino acids, cations and anions. Furthermore, probe PBQ showed excellent AIEE properties with red shift in maximum emission wavelength due to formations of J-aggregates.

View Article and Find Full Text PDF

Tanimilast is an inhaled phosphodiesterase-4 inhibitor currently in phase III clinical development for treating chronic obstructive pulmonary disease and asthma. This trial aimed to characterize the pharmacokinetics, mass balance, and metabolite profiling of tanimilast. Eight healthy male volunteers received a single dose of nonradiolabeled tanimilast via powder inhaler (Chiesi NEXThaler [3200 μg]), followed by a concomitant intravenous infusion of a microtracer ([C]-tanimilast: 18.

View Article and Find Full Text PDF

Discovery of pyrazoline analogs as multi-targeting cholinesterase, β-secretase and Aβ aggregation inhibitors through lead optimization strategy.

Int J Biol Macromol

January 2025

Pharmaceutical Chemistry Research Laboratory I, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India. Electronic address:

The multi-target directed ligands (MTDLs) strategy has been evolved as the propitious approach for the development of therapeutics for Alzheimer's disease (AD). In an earlier report, we described the novel series of chalcone derivatives bearing N-aryl piperazine scaffold as MTDLs for the treatment of AD. Herein, we report the lead optimization of the series culminating in potent, multi-targeting compounds (32-57), evaluated through in-vitro and in-vivo biological studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!