The acoustic interaction of optical pulses in optical fibers is investigated directly by time-resolved pump-probe measurements of the transmission of a fiber Sagnac-loop interferometer. Resonant enhancement of the refractive-index change deltan(ac) induced by the acoustic waves is observed when the repetition frequency of the pulse train is close to a vibrational eigenfrequency of the fiber. For standard fiber deltan(ac) is enhanced by a factor of ~3 at the 465-MHz eigenmode frequency, and this factor increases to ~10 when the polymer jacket is removed from the fiber. The guided acoustic wave Brillouin scattering spectrum that arises from spontaneous thermal excitation of the acoustic eigenmodes of the fibers is also measured. The results suggest that the resonant enhancement of deltan(ac) is limited by dampling that is due to the polymer jacket and by inhomogeneous broadening that is due to fiber diameter variations.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/ol.21.000393 | DOI Listing |
J Magn Reson Imaging
January 2025
Department of Radiology, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine (Shenzhen Traditional Chinese Medicine Hospital), Shenzhen, China.
Background: Multifrequency MR elastography (mMRE) enables noninvasive quantification of renal stiffness in patients with chronic kidney disease (CKD). Manual segmentation of the kidneys on mMRE is time-consuming and prone to increased interobserver variability.
Purpose: To evaluate the performance of mMRE combined with automatic segmentation in assessing CKD severity.
Phys Eng Sci Med
January 2025
School of Biological Science and Medical Engineering, Beihang University, 37 Xueyuan Road, Haidian District, Beijing, 100191, China.
Extracorporeal shock wave therapy (ESWT) achieves its therapeutic purpose mainly through the biological effects produced by the interaction of shock waves with tissues, and the accurate measurement and calculation of the mechanical parameters of shock waves in tissues are of great significance in formulating the therapeutic strategy and evaluating the therapeutic effect. This study utilizes the approach of implanting flexible polyvinylidene fluoride (PVDF) vibration sensors inside the tissue-mimicking phantom of various thicknesses to capture waveforms at different depths during the impact process in real time. Parameters including positive and negative pressure changes (P, P), pulse wave rise time ([Formula: see text]), and energy flux density (EFD) are calculated, and frequency spectrum analysis of the waveforms is conducted.
View Article and Find Full Text PDFAnn Surg Oncol
January 2025
Department of Radiology, University of Washington, Seattle, WA, USA.
Background: Ductal carcinoma in situ (DCIS) is overtreated, in part because of inability to predict which DCIS cases diagnosed at core needle biopsy (CNB) will be upstaged at excision. This study aimed to determine whether quantitative magnetic resonance imaging (MRI) features can identify DCIS at risk of upstaging to invasive cancer.
Methods: This prospective observational clinical trial analyzed women with a diagnosis of DCIS on CNB.
Acc Chem Res
January 2025
The Wolfson Catalysis Centre, Department of Chemistry, University of Oxford, Oxford OX1 3QR, U.K.
ConspectusThe discovery of reversible hydrogenation using metal-free phosphoborate species in 2006 marked the official advent of frustrated Lewis pair (FLP) chemistry. This breakthrough revolutionized homogeneous catalysis approaches and paved the way for innovative catalytic strategies. The unique reactivity of FLPs is attributed to the Lewis base (LB) and Lewis acid (LA) sites either in spatial separation or in equilibrium, which actively react with molecules.
View Article and Find Full Text PDFNano Lett
January 2025
College of Life Science and Technology, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan 430074, China.
The pursuit of cutting-edge diagnostic systems capable of detecting biomarkers with exceptional sensitivity and precision is crucial for the timely and accurate monitoring of inflammatory responses. In this study, we introduce a dual gold nanoparticle-enhanced metasurface plasmon resonance (Bi-MSPR) biosensor for the ultrasensitive detection of C-reactive protein (CRP). The Bi-MSPR sensor is constructed upon a nanocup array chip with gradient-free electron density, where an innovative metasurface structure is built using a PEI-immobilized dual-gold nanoparticle amplification system.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!