Early sensory experience shapes the functional and anatomical connectivity of neuronal networks. Light deprivation alters synaptic transmission and modifies light response properties in the visual system, from retinal circuits to higher visual centers. These effects are more pronounced during a critical period in juvenile life and are mostly reversed by restoring normal light conditions. Here we show that complete light deprivation, from birth to periods beyond the critical period, permanently modifies the receptive field properties of retinal ganglion cells. Visual deprivation reduced both the strength of light responses in ganglion cells and their receptive field size. Light deprivation produced an imbalance in the ratio of inhibitory to excitatory inputs, with a shift toward larger inhibitory conductances. Ganglion cell receptive fields in visually deprived animals showed a spatial mismatch of inhibitory and excitatory inputs and inhibitory inputs were highly scattered over the receptive field. These results indicate that visual experience early in life is critical for the refinement of retinal circuits and for appropriate signaling of the spatiotemporal properties of visual stimuli, thus influencing the response properties of neurons in higher visual centers and their processing of visual information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6665001PMC
http://dx.doi.org/10.1523/JNEUROSCI.3854-09.2009DOI Listing

Publication Analysis

Top Keywords

retinal circuits
12
light deprivation
12
receptive field
12
visual
8
visual deprivation
8
response properties
8
properties visual
8
higher visual
8
visual centers
8
critical period
8

Similar Publications

Self-Organized Protonic Conductive Nanochannel Arrays for Ultra-High-Density Data Storage.

Nano Lett

January 2025

National Laboratory of Solid States Microstructures, School of Physics, Nanjing University, Nanjing 210093, People's Republic of China.

While the highest-performing memristors currently available offer superior storage density and energy efficiency, their large-scale integration is hindered by the random distribution of filaments and nonuniform resistive switching in memory cells. Here, we demonstrate the self-organized synthesis of a type of two-dimensional protonic coordination polymers with high crystallinity and porosity. Hydrogen-bond networks containing proton carriers along its nanochannels enable uniform resistive switching down to the subnanoscale range.

View Article and Find Full Text PDF

Introduction: Current brain-based visual prostheses pose significant challenges impeding adoption such as the necessarily complex surgeries and occurrence of more substantial side effects due to the sensitivity of the brain. This has led to much effort toward vision restoration being focused on the more approachable part of the brain - the retina. Here we introduce a novel, parameterized simulation platform that enables study of human retinal degeneration and optimization of stimulation strategies.

View Article and Find Full Text PDF

The human body is an intricate system, where diverse and complex signaling among different organs sustains physiological activities. The eye, as a primary organ for information acquisition, not only plays a crucial role in visual perception but also, as increasing evidence suggests, exerts a broad influence on the entire body through complex circuits upon receiving light signals which is called non-image-forming vision. However, the extent and mechanisms of light's impact on the body through the eyes remain insufficiently explored.

View Article and Find Full Text PDF

Non-image forming (NIF) pathways, a specialized branch of retinal circuitry, play a crucial role supporting physiological and behavioral processes, including circadian rhythmicity. Among the NIF regions, the dorsal raphe nucleus (DRN), a midbrain serotonergic cluster of neurons, is also devoted to circadian functions. Despite indirectly send photic inputs to circadian centers and modulating their activities, little is known about the organization of retina-DRN circuits in primate species.

View Article and Find Full Text PDF

During neuronal synaptic transmission, the exocytotic release of neurotransmitters from synaptic vesicles in the presynaptic neuron evokes a change in conductance for one or more types of ligand-gated ion channels in the postsynaptic neuron. The standard method of investigation uses electrophysiological recordings of the postsynaptic response. However, electrophysiological recordings can directly quantify the presynaptic release of neurotransmitters with high temporal resolution by measuring the membrane capacitance before and after exocytosis, as fusion of the membrane of presynaptic vesicles with the plasma membrane increases the total capacitance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!