Prion diseases are presumed to be caused by the accumulation in the brain of a pathological protein called prion protein (PrP) scrapie which results from the transconformation of cellular PrP, a ubiquitous glycoprotein expressed in all mammals. Since all isoforms of PrP are perceived as self by the host immune system, a major problem in designing efficient immunoprophylaxis or immunotherapy is to overcome tolerance. The present study was aimed at investigating whether bone-marrow-derived dendritic cells (DCs) loaded with peptides previously shown to be immunogenic in PrP-deficient mice, can overcome tolerance in PrP-proficient wild-type mice and protect them against scrapie. Results show that, in such mice, peptide-loaded DCs elicit both lymphokine release by T cells and antibody secretion against native cellular PrP. Repeated recalls with peptide-loaded DCs reduces the attack rate of 139A scrapie inoculated intraperitoneally and retards disease duration by 40 days. Most interestingly, survival time in individual mice appears to be correlated with the level of circulating antibody against native cellular PrP.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/vir.0.013417-0 | DOI Listing |
Genes (Basel)
November 2024
Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, GR-12243 Athens, Greece.
As the global population ages, the rising prevalence of neurodegenerative diseases, characterized by abnormal protein aggregates, presents significant challenges for early diagnosis and disease monitoring. Identifying accessible tissue biomarkers is crucial for advancing our ability to detect and track the progression of these diseases. Among the most promising biomarkers is the skin, which shares a common embryological origin with the brain and central nervous system (CNS).
View Article and Find Full Text PDFChem Commun (Camb)
January 2025
Department of Chemistry, Indian Institute of Technology, Roorkee 247667, India.
KRS-1, a biocompatible nickel(II) complex, is introduced as a potent fluorescent probe for PrP fibrillar aggregates. KRS-1 shows a 15-fold enhancement in PL intensity and detects all stages of PrP aggregation. Fluorescence microscopy confirms its efficacy in identifying PrP fibrillar aggregates in HT-22 cells.
View Article and Find Full Text PDFSmall
January 2025
Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST), 335 Science Road, Daejeon, 34141, Republic of Korea.
The self-replication of misfolded prion protein (PrP) aggregates is the major pathological event of different prion diseases, affecting mammal brains by cross-species transmission. Here, the structural modulation of PrP aggregates are reported by activated carbon materials upon near-infrared (NIR) light irradiation. Activated carbon cobalt (ACC) nanosheets are synthesized using glycerol and metal salts to utilize the charge carriers released under NIR light exposure.
View Article and Find Full Text PDFSci Rep
January 2025
Foot and Ankle Research and Innovation Lab (FARIL), Department of Orthopaedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
Tendon injuries present significant medical, social, and economic challenges globally. Despite advancements in tendon injury repair techniques, outcomes remain suboptimal due to inferior tissue quality and functionality. Tissue engineering offers a promising avenue for tendon regeneration, with biocompatible scaffolds playing a crucial role.
View Article and Find Full Text PDFClin Proteomics
January 2025
Ophthalmology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, Largo A. Gemelli, 1, 00168, Rome, Italy.
Our objective is to determine the protein and complements constituents of Cord blood Platelet-rich plasma (CB-PRP), based on the hypothesis that it contains beneficial components capable of arresting or potentially decelerating the advancement of atrophic age-related macular degeneration (dry-AMD), with the support of radiomics. Two distinct pools of CB-PRP were assessed, each pool obtained from a total of 15 umbilical cord-blood donors. One aliquot of each pool respectively was subjected to proteomic analysis in order to enhance the significance of our findings, by identifying proteins that are shared between the two sample pools and gaining insights into the pathways they are associated with.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!