The microbial metabolism of dietary phytoestrogens varies considerably among individuals and influences the final exposure to bioactive compounds. In view of the increasing number of food supplements combining several classes of phytoestrogens, the microbial potential to activate various proestrogens within an individual was evaluated in 3 randomized dietary crossovers. Treatment allocation was based on participants' eligibility (>45% in vitro bioactivation of >or=2 separate proestrogens by fecal cultures; n = 40/100). After a run-in of >or=4 d, participants were given soy-, hop-, and/or flax-based food supplements dosed either separately (SOY: 2.83 mg daidzein aglycone equivalents/supplement, HOP: 1.20 mg isoxanthohumol (IX)/supplement, or FLAX: 2.08 mg secoisolariciresinol (SECO) aglycone equivalents/supplement; reference intervention) or simultaneously (MIX; test intervention) 3 times/d for 5 d, followed by a wash-out period (>or=7 d) and the second intervention. Before and after each (co)supplementation, spot urine and serum were collected. In total, 22 equol, 19 8-prenylnaringenin (8-PN), and 21 enterolactone (ENL) producers completed the SOY+MIX, HOP+MIX, and FLAX+MIX trials, respectively. The microbial bioactivation of daidzein, IX, and SECO, generally decreased upon coincubation in vitro (equol: 4.4%, P = 0.164; 8-PN: 20.5%, P < 0.001; ENL: 44.3%, P < 0.001) and cosupplementation in vivo (equol: 28.3%, P = 0.009; 8-PN: 35.4%, P = 0.107; ENL: 35.9%, P = 0.003). Although the bioavailabilities of total isoflavones, prenylflavonoids, and lignans were not significantly affected upon coadministration, participants were exposed to lower phytoestrogen-derived 17beta-estradiol equivalents. In conclusion, the bioavailability of phytoestrogens, especially when given in mixtures, is subject to high interindividual variation. These findings support the importance of personalized screening when assessing the efficacy of such products and mixtures.

Download full-text PDF

Source
http://dx.doi.org/10.3945/jn.109.113639DOI Listing

Publication Analysis

Top Keywords

isoflavones prenylflavonoids
8
prenylflavonoids lignans
8
phytoestrogen-derived 17beta-estradiol
8
17beta-estradiol equivalents
8
food supplements
8
aglycone equivalents/supplement
8
cosupplementation isoflavones
4
lignans alters
4
alters human
4
human exposure
4

Similar Publications

This systematic review provides an overview of the available evidence on the inter-individual variability (IIV) in the absorption, distribution, metabolism, and excretion (ADME) of phenolic metabolites and its determinants. Human studies were included investigating the metabolism and bioavailability of (poly)phenols and reporting IIV. One hundred fifty-three studies met the inclusion criteria.

View Article and Find Full Text PDF

Tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) represents a promising anticancer agent, as it selectively induces apoptosis in transformed cells without altering the cellular machinery of healthy cells. Unfortunately, the presence of TRAIL resistance mechanisms in a variety of cancer types represents a major hurdle, thus limiting the use of TRAIL as a single agent. Accumulating studies have shown that TRAIL-mediated apoptosis can be facilitated in resistant tumors by combined treatment with antitumor agents, ranging from synthetic molecules to natural products.

View Article and Find Full Text PDF

Chemosystematic and evolutionary trends of the genistoid clade sensu stricto (Papilionoideae, Fabaceae).

Phytochemistry

March 2021

Departamento de Botânica, Instituto de Ciências Biológicas e da Saúde, Universidade Federal Rural do Rio de Janeiro, 23890-000, Seropédica, Brazil. Electronic address:

The Papilionoideae, which comprises 503 genera and approximately 14,000 species, is the largest and most diverse subfamily of the Fabaceae family. In this subfamily, the Crotalarieae, Genisteae, Podalyrieae, Thermopsideae, Sophoreae and Euchresteae tribes are closely related by micro and macromolecular features, thus forming the genistoid clade. This group combines well-known genera, whereas other genera lack phytochemical and chemotaxonomic studies.

View Article and Find Full Text PDF

Phytoestrogens are a class of plant produced polyphenolic compounds with diphenolic structure, which is similar to 17β-estradiol. These phytoestrogens preferentially bind to estrogen receptors, however, with weak affinity. Recently, many studies have found that these phytoestrogens can be transformed by gut microbiota through novel enzymatic reactions into metabolites with altered bioactivity.

View Article and Find Full Text PDF

The Antioxidant Activity of Prenylflavonoids.

Molecules

February 2020

QOPNA & LAQV-REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal.

Prenylated flavonoids combine the flavonoid moiety and the lipophilic prenyl side-chain. A great number of derivatives belonging to the class of chalcones, flavones, flavanones, isoflavones and other complex structures possessing different prenylation patterns have been studied in the past two decades for their potential as antioxidant agents. In this review, current knowledge on the natural occurrence and structural characteristics of both natural and synthetic derivatives was compiled.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!