The utility of comparative genetics to inform breast cancer prevention strategies.

Genetics

McArdle Laboratory for Cancer Research, University of Wisconsin, Madison, Wisconsin 53706, USA.

Published: October 2009

My research seeks to aid in developing approaches to prevent breast cancer. This research evolved from our early empirical studies for discovering natural compounds with anticancer activities, coupled with clinical evaluation to a genetics-driven approach to prevention. This centers on the use of comparative genomics to discover risk-modifying alleles that could help define population and individual risk and also serve as potential prevention drugable targets to mitigate risk. Here, we initially fine map mammary cancer loci in a rat carcinogenesis model and then evaluate their human homologs in breast cancer case-control association studies. This approach has yielded promising results, including the finding that the compound rat QTL Mcs5a's human homologous region was associated with breast cancer risk. These and related findings have the potential to yield advancements both in translation-prevention research and in basic molecular genetics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2766305PMC
http://dx.doi.org/10.1534/genetics.109.108480DOI Listing

Publication Analysis

Top Keywords

breast cancer
16
cancer
5
utility comparative
4
comparative genetics
4
genetics inform
4
breast
4
inform breast
4
cancer prevention
4
prevention strategies
4
strategies seeks
4

Similar Publications

Triple-negative breast cancer (TNBC) remains a significant global health challenge, emphasizing the need for precise identification of patients with specific therapeutic targets and those at high risk of metastasis. This study aimed to identify novel therapeutic targets for personalized treatment of TNBC patients by elucidating their roles in cell cycle regulation. Using weighted gene co-expression network analysis (WGCNA), we identified 83 hub genes by integrating gene expression profiles with clinical pathological grades.

View Article and Find Full Text PDF

Background: Breast cancer screening (BCS) inequities are evident at national and local levels, and many health systems want to address these inequities, but may lack data about contributing factors. The objective of this study was to inform health system interventions through an exploratory analysis of potential multilevel contributors to BCS inequities using health system data.

Methods: The authors conducted a cross-sectional analysis within a large academic health system including 19,774 individuals who identified as Black (n = 1445) or White (n = 18,329) race and were eligible for BCS.

View Article and Find Full Text PDF

Background: To date, 11 DNA polymerase epsilon (POLE) pathogenic variants have been declared "hotspot" mutations. Patients with endometrial cancer (EC) characterized by POLE hotspot mutations (POLEmut) have exceptional survival outcomes. Whereas international guidelines encourage deescalation of adjuvant treatment in early-stage POLEmut EC, data regarding safety in POLEmut patients with unfavorable characteristics are still under investigation.

View Article and Find Full Text PDF

Multi-gene panel testing allows efficient detection of pathogenic variants in cancer susceptibility genes including moderate-risk genes such as ATM and PALB2. A growing number of studies examine the risk of breast cancer (BC) conferred by pathogenic variants of these genes. A meta-analysis combining the reported risk estimates can provide an overall estimate of age-specific risk of developing BC, that is, penetrance for a gene.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!