A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The scent of supercolonies: the discovery, synthesis and behavioural verification of ant colony recognition cues. | LitMetric

The scent of supercolonies: the discovery, synthesis and behavioural verification of ant colony recognition cues.

BMC Biol

Department of Environmental Science, Policy and Management, 137 Mulford Hall #3114, University of California, Berkeley, CA 94720-3114, USA.

Published: October 2009

Background: Ants form highly social and cooperative colonies that compete, and often fight, against other such colonies, both intra- and interspecifically. Some invasive ants take sociality to an extreme, forming geographically massive 'supercolonies' across thousands of kilometres. The success of social insects generally, as well as invasive ants in particular, stems from the sophisticated mechanisms used to accurately and precisely distinguish colonymates from non-colonymates. Surprisingly, however, the specific chemicals used for this recognition are virtually undescribed.

Results: Here, we report the discovery, chemical synthesis and behavioural testing of the colonymate recognition cues used by the widespread and invasive Argentine ant (Linepithema humile). By synthesizing pure versions of these chemicals in the laboratory and testing them in behavioural assays, we show that these compounds trigger aggression among normally amicable nestmates, but control hydrocarbons do not. Furthermore, behavioural testing across multiple different supercolonies reveals that the reaction to individual compounds varies from colony to colony -- the expected reaction to true colony recognition labels. Our results also show that both quantitative and qualitative changes to cuticular hydrocarbon profiles can trigger aggression among nestmates. These data point the way for the development of new environmentally-friendly control strategies based on the species-specific manipulation of aggressive behaviour.

Conclusion: Overall, our findings reveal the identity of specific chemicals used for colonymate recognition by the invasive Argentine ants. Although the particular chemicals used by other ants may differ, the patterns reported here are likely to be true for ants generally. As almost all invasive ants display widespread unicoloniality in their introduced ranges, our findings are particularly relevant for our understanding of the biology of these damaging invaders.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775022PMC
http://dx.doi.org/10.1186/1741-7007-7-71DOI Listing

Publication Analysis

Top Keywords

invasive ants
12
synthesis behavioural
8
colony recognition
8
recognition cues
8
specific chemicals
8
behavioural testing
8
colonymate recognition
8
invasive argentine
8
trigger aggression
8
ants
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!