AI Article Synopsis

  • The fungus Candida albicans can cause severe infections by breaching epithelial barriers, primarily originating from the gastrointestinal tract.
  • Using various microscopy techniques and different assays, the study explored how C. albicans interacts with oral and intestinal epithelial cells.
  • Findings indicate that the fungus's ability to adhere, invade, and cause damage varies based on the type of epithelial cell and its differentiation stage, with distinct invasion strategies employed for oral versus intestinal cells.

Article Abstract

The human pathogenic fungus Candida albicans can cause systemic infections by invading epithelial barriers to gain access to the bloodstream. One of the main reservoirs of C. albicans is the gastrointestinal tract and systemic infections predominantly originate from this niche. In this study, we used scanning electron and fluorescence microscopy, adhesion, invasion and damage assays, fungal mutants and a set of fungal and host cell inhibitors to investigate the interactions of C. albicans with oral epithelial cells and enterocytes. Our data demonstrate that adhesion, invasion and damage by C. albicans depend not only on fungal morphology and activity, but also on the epithelial cell type and the differentiation stage of the epithelial cells, indicating that epithelial cells differ in their susceptibility to the fungus. C. albicans can invade epithelial cells by induced endocytosis and/or active penetration. However, depending on the host cell faced by the fungus, these routes are exploited to a different extent. While invasion into oral cells occurs via both routes, invasion into intestinal cells occurs only via active penetration.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1462-5822.2009.01394.xDOI Listing

Publication Analysis

Top Keywords

epithelial cells
20
candida albicans
8
oral epithelial
8
cells enterocytes
8
systemic infections
8
adhesion invasion
8
invasion damage
8
host cell
8
active penetration
8
cells occurs
8

Similar Publications

Micropapillary adenocarcinoma (MPC) is an aggressive histological subtype of lung adenocarcinoma (LUAD). MPC is composed of small clusters of cancer cells exhibiting inverted polarity. However, the mechanism underlying its formation is poorly understood.

View Article and Find Full Text PDF

NS1 binding protein regulates stress granule dynamics and clearance by inhibiting p62 ubiquitination.

Nat Commun

December 2024

Department of Biological Sciences and Biotechnology, College of Life Sciences and Nanotechnology, Hannam University, Daejeon, Korea.

The NS1 binding protein, known for interacting with the influenza A virus protein, is involved in RNA processing, cancer, and nerve cell growth regulation. However, its role in stress response independent of viral infections remains unclear. This study investigates NS1 binding protein's function in regulating stress granules during oxidative stress through interactions with GABARAP subfamily proteins.

View Article and Find Full Text PDF

E-cigarette/vaping-associated lung injury (EVALI) is strongly associated with vitamin E acetate and often occurs with concomitant tetrahydrocannabinol (THC) use. To uncover pathways associated with EVALI, we examined cytokines, transcriptomic signatures, and lipidomic profiles in bronchoalveolar lavage fluid (BALF) from THC-EVALI patients. At a single center, we prospectively enrolled mechanically ventilated patients with EVALI from THC-containing products (N = 4) and patients with non-vaping acute lung injury and airway controls (N = 5).

View Article and Find Full Text PDF

Biological systems are complex, encompassing intertwined spatial, molecular and functional features. However, methodological constraints limit the completeness of information that can be extracted. Here, we report the development of INSIHGT, a non-destructive, accessible three-dimensional (3D) spatial biology method utilizing superchaotropes and host-guest chemistry to achieve homogeneous, deep penetration of macromolecular probes up to centimeter scales, providing reliable semi-quantitative signals throughout the tissue volume.

View Article and Find Full Text PDF

ALCAM is an entry factor for severe community acquired Pneumonia-associated Human adenovirus species B.

Nat Commun

December 2024

Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institutes of Respiratory Diseases, School of Medicine, Shanghai Jiao Tong University and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai, China.

Human adenovirus (HAdV) is a widely spread respiratory pathogen that can cause infections in multiple tissues and organs. Previous studies have established an association between HAdV species B (HAdV-B) infection and severe community-acquired pneumonia (SCAP). However, the connection between SCAP-associated HAdV-B infection and host factor expression profile in patients has not been systematically investigated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!