AI Article Synopsis

Article Abstract

The most consistent feature of Wiskott Aldrich syndrome (WAS) is profound thrombocytopenia with small platelets. The responsible gene encodes WAS protein (WASP), which functions in leucocytes as an actin filament nucleating agent -yet- actin filament nucleation proceeds normally in patient platelets regarding shape change, filopodia and lamellipodia generation. Because WASP localizes in the platelet membrane skeleton and is mobilized by alphaIIbbeta3 integrin outside-in signalling, we questioned whether its function might be linked to integrin. Agonist-induced alphaIIbbeta3 activation (PAC-1 binding) was normal for patient platelets, indicating normal integrin inside-out signalling. Inside-out signalling (fibrinogen, JON/A binding) was also normal for wasp-deficient murine platelets. However, adherence/spreading on immobilized fibrinogen was decreased for patient platelets and wasp-deficient murine platelets, indicating decreased integrin outside-in responses. Another integrin outside-in dependent response, fibrin clot retraction, involving contraction of the post-aggregation actin cytoskeleton, was also decreased for patient platelets and wasp-deficient murine platelets. Rebleeding from tail cuts was more frequent for wasp-deficient mice, suggesting decreased stabilisation of the primary platelet plug. In contrast, phosphatidylserine exposure, a pro-coagulant response, was enhanced for WASP-deficient patient and murine platelets. The collective results reveal a novel function for WASP in regulating pro-aggregatory and pro-coagulant responses downstream of integrin outside-in signalling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2810352PMC
http://dx.doi.org/10.1111/j.1365-2141.2009.07959.xDOI Listing

Publication Analysis

Top Keywords

integrin outside-in
20
patient platelets
16
murine platelets
16
outside-in signalling
12
wasp-deficient murine
12
platelets
9
alphaiibbeta3 integrin
8
actin filament
8
binding normal
8
platelets indicating
8

Similar Publications

Background: Neutrophils are the most abundant leukocytes in human blood, and their recruitment is essential for innate immunity and inflammatory responses. The initial and critical step of neutrophil recruitment is their adhesion to vascular endothelium, which depends on G protein-coupled receptor (GPCR) triggered integrin inside-out signaling that induces β2 integrin activation and clustering on neutrophils. Kindlin-3 and talin-1 are essential regulators for the inside-out signaling induced β2 integrin activation.

View Article and Find Full Text PDF

Cytosolic S100A8/A9 promotes Ca supply at LFA-1 adhesion clusters during neutrophil recruitment.

Elife

December 2024

Walter Brendel Center of Experimental Medicine, Biomedical Center, Institute of Cardiovascular Physiology and Pathophysiology, Ludwig-Maximilians-University, Planegg-Martinsried, München, Germany.

S100A8/A9 is an endogenous alarmin secreted by myeloid cells during many acute and chronic inflammatory disorders. Despite increasing evidence of the proinflammatory effects of extracellular S100A8/A9, little is known about its intracellular function. Here, we show that cytosolic S100A8/A9 is indispensable for neutrophil post-arrest modifications during outside-in signaling under flow conditions in vitro and neutrophil recruitment in vivo, independent of its extracellular functions.

View Article and Find Full Text PDF

ConspectusSynthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics , biomaterial matrices have been developed with tailorable properties that can be modulated in the presence of cells.

View Article and Find Full Text PDF

Rapid neutrophil recruitment is critical for controlling infection, with dysfunctional neutrophil responses in diseases like diabetes associated with greater morbidity and mortality. We have shown that the leukocyte protein ECRG4 enhances early neutrophil recruitment to cutaneous wounds and hypothesized that ECRG4 regulates the early host response to infection. Using a cutaneous infection model, we found that ECRG4 KO mice had decreased early neutrophil recruitment with persistent larger lesions, increased bacterial proliferation and systemic dissemination.

View Article and Find Full Text PDF

CD11b-NOX2 mutual regulation-mediated microglial exosome release contributes to rotenone-induced inflammation and neurotoxicity in BV2 microglia and primary cultures.

Free Radic Biol Med

November 2024

School of Public Health, Dalian Medical University, Dalian, 116044, China; National-Local Joint Engineering Research Center for Drug-Research and Development (R & D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, 116044, China. Electronic address:

Epidemiological studies have revealed a potent association between chronic exposure to rotenone, a commonly used pesticide, in individuals and the incidence of Parkinson's disease (PD). We previously identified the contribution of the activation of microglial NADPH oxidase (NOX2) in rotenone-induced neurotoxicity. However, the regulation of NOX2 activation remains unexplored.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!