The field of tissue engineering remains one of the least explored areas of current meniscal research but holds great promise. In this investigation, meniscal fibrochondrocytes were isolated from fresh human meniscal tissue and seeded onto synthetic polyglycolic acid (PGA) scaffolds. Constructs were implanted into the dorsal subcutaneous space of athymic nude mice. Control scaffolds, devoid of meniscal cells, were simultaneously implanted in additional mice. Constructs were harvested over 12 weeks and treated with a variety of histochemical stains to analyze general specimen morphology, cellular viability and proliferation, and collagen secretion. Results indicate that meniscal fibrochondrocyte proliferation increased over the time of implantation with cellular consolidation occurring as the PGA scaffolding was progressively hydrolyzed. Collagen production also increased over time. There were favorable similarities between constructs and human meniscal controls in terms of cellular morphology, phenotypic expression, and collagen production. These initial findings demonstrate procedures supporting proliferation of meniscal fibrochondrocytes, expression of fibrochondral phenotype, and the formation of putative meniscal tissue.
Download full-text PDF |
Source |
---|
J Knee Surg
January 2025
Orthopaedic Surgery, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Introduction: We aimed to assess medial meniscal (MM) healing and horizontal tear (HT) repair in the knees of young patients.
Materials And Methods: We enrolled 37 knees of 35 patients (mean age: 28.0 ± 10.
Acta Orthop Belg
December 2024
Percutaneous intra-meniscal platelet-rich plasma (PRP) is a promising tool for managing low-grade meniscal injuries in non-athletic patients. The study evaluates the clinical and radiological outcomes of PRP intra-meniscal injection in meniscal tears. Forty-eight patients were injected with 3 injections of PRP at an interval of one week with a standardised technique under sonographic guidance.
View Article and Find Full Text PDFAm J Sports Med
January 2025
Department of Orthopaedics, Isala Hospital, Zwolle, The Netherlands.
Background: Current knowledge on the microvascular anatomy of adult human menisci is based on cadaveric studies. However, considerable interindividual variation in meniscal microvascularization has been reported in recent studies with small sample sizes.
Purpose: To assess the association between patient characteristics and the depth of microvascularization of the meniscus.
Am J Sports Med
January 2025
Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois, USA.
Background: Timely recognition and addressing of concomitant cartilage damage at the time of meniscal allograft transplantation (MAT) is critical to warrant future success. However, there remains a scarcity of data comparing outcomes between MAT with and without cartilage procedures.
Purpose: To compare patient-reported outcomes and rates of complications, failures, reoperations, and graft survivorship after MAT with concomitant cartilage procedures (MAT/Cart) and MAT without (MAT/NoCart).
Life Sci Space Res (Amst)
February 2025
Department of Radiation Oncology, Wake Forest University School of Medicine. Winston-Salem, NC, USA. Electronic address:
Reduced weight-bearing during spaceflight has been associated with musculoskeletal degradation that risks astronaut health and performance in transit and upon reaching deep space destinations. Previous rodent experiments aboard the international space station (ISS) have identified that the spaceflight-induced molecular arthritic phenotype was characterized with an increase in oxidative stress. This study evaluated if treatment with a superoxide dismutase (SOD) mimetic on orbit could prevent spaceflight-induced damage to the knee and hip articular cartilage, and the menisci in rodents.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!