Molecular geometry of 9H-adenine tautomer was calculated by MP2 method using several basis sets (up to cc-pVQZ). According to the results of all quantum-chemical calculations, the molecule has an essentially planar heavy-atom skeleton and a quasi-planar amino group. Since the bond lengths of adenine are of similar magnitude, the structural problem could not be solved by the gas-phase electron diffraction (GED) method alone. Therefore the differences between similar bond lengths derived from ab initio geometry and rotational constants from microwave (MW) spectroscopic study (Brown, R. D.; et al. Chem. Phys. Lett. 1989, 156, 61) were used as supplementary data. To bring the data of the different experimental methods to the same basis (equilibrium structure), GED internuclear distances r(a) and MW rotational constants B(0)((i)) (i = A, B, C) were corrected for vibrational effects. Harmonic and anharmonic corrections were estimated using quadratic and cubic force constants from MP2/cc-pVTZ calculations. Anharmonic corrections to r(a) distances were calculated using improved theoretical approximation. The molecular structure of 9H-adenine is determined experimentally for the first time. Since the GED intensities are not sensitive to hydrogen positions, and small deviations of skeleton cannot be determined with appropriate uncertainty, the molecular configuration of adenine was assumed to be planar (C(s) symmetry) in the GED analysis. The main equilibrium structural parameters determined from GED data supplemented by rotational constants and results of MP2/cc-pVTZ calculations are the following (bond lengths in angstroms and bond angles in degrees with 3sigma in parentheses): r(e)(C2-N1) = 1.344(3), r(e)(C2-N3) = 1.330(3), r(e)(C4-N3) = 1.333(3), r(e)(C4-C5) = 1.401(3), r(e)(C5-C6) = 1.409(3), r(e)(C6-N1) = 1.332(3), r(e)(C5-N7) = 1.380(4), r(e)(C8-N7) = 1.319(3), r(e)(C8-N9) = 1.371(4), r(e)(C4-N9) = 1.377(4), r(e)(C6-N10) = 1.357(4), angle(e)(N1-C2-N3) = 129.0(1), angle(e)(C2-N3-C4) = 111.0(1), angle(e)(N3-C4-C5) = 127.2(1), angle(e)(C4-C5-N7) = 111.9(2), angle(e)(C5-N7-C8) = 103.4(2), and angle(e)(C5-C6-N10) = 121.9(2). The determined experimental bond lengths of adenine are in good agreement with those from MP2 calculations and with experimental bond lengths of pyrimidine and 1H-imidazole (except for the C-C double bond in imidazole). Being close to typical aromatic internuclear distances, the obtained C-C and C-N bond lengths indicate the aromatic nature of this molecule. The calculated aromaticity indexes (GIAO-MP2/cc-pVTZ) confirm this statement.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp905755uDOI Listing

Publication Analysis

Top Keywords

bond lengths
24
rotational constants
12
molecular structure
8
structure 9h-adenine
8
9h-adenine tautomer
8
gas-phase electron
8
electron diffraction
8
bond
8
lengths adenine
8
internuclear distances
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!