Octahedrally coordinated platinum nitrosyl complexes [Pt(NH(3))(4)(NO(3))(NO)](NO(3))(2) (1) and [Pt(NH(3))(4)(SO(4))(NO)](HSO(4))(CH(3)CN) (2) undergo linkage isomerization at temperatures below 130 K when excited with red light. Irradiation in the spectral range of 570-800 nm results in an inversion of the NO ligand from a Pt-NO to a Pt-ON configuration. The metastable state Pt-ON can be reverted back to the ground state (GS) Pt-NO by irradiation with blue-green or infrared light or by heating above 130 K. The characteristic shift of the nu(NO) stretching vibration from 1744 to 1815 cm(-1) in 1 and from 1714 to 1814 cm(-1) in 2 allowed the unambiguous identification of the respective nitrosyl isomers. Up to 26% of the complexes of 1 and 20% of 2 may be photochemically excited toward the metastable state (MS). Using X-ray crystallography and DFT calculations, it is shown that the Pt-NO in these {MNO}(8) complexes exhibits a bent arrangement with a Pt-N-O angle in the range of 117-120 degrees. As a consequence and in contrast to the known {MNO}(6) complexes only one metastable linkage isomer Pt-ON with a correspondingly bent Pt-O-N arrangement is formed, as evidenced by spectroscopy and DFT calculations. The calculated partial density of states shows that the charge transfer transition Pt(5d) --> pi(star)(NO) is responsible for the formation of the metastable state.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ic901392qDOI Listing

Publication Analysis

Top Keywords

metastable state
12
octahedrally coordinated
8
coordinated platinum
8
spectral range
8
dft calculations
8
complexes
5
photogeneration nitrosyl
4
nitrosyl linkage
4
linkage isomers
4
isomers octahedrally
4

Similar Publications

Identifying transitional states is crucial for understanding protein conformational changes that underlie numerous biological processes. Markov state models (MSMs), built from Molecular Dynamics (MD) simulations, capture these dynamics through transitions among metastable conformational states, and have demonstrated success in studying protein conformational changes. However, MSMs face challenges in identifying transition states, as they partition MD conformations into discrete metastable states (or free energy minima), lacking description of transition states located at the free energy barriers.

View Article and Find Full Text PDF

Due to the sulfur's atoms' propensity to form molecules and/or polymeric chains of various sizes and configuration, elemental sulfur possesses more allotropes and polymorphs than any other element at ambient conditions. This variability of the starting building blocks is partially responsible for its rich and fascinating phase diagram, with pressure and temperature changing the states of sulfur from insulating molecular rings and chains to semiconducting low- and high-density amorphous configurations to incommensurate superconducting metallic atomic phase. Here, using a fast compression technique, we demonstrate that the rapid pressurisation of liquid sulfur can effectively break the molecular ring structure, forming a glassy polymeric state of pure-chain molecules (Am-S).

View Article and Find Full Text PDF

Anomalous and large topological Hall effects in β-Mn chiral compound Co6.5Ru1.5Zn8Mn4: electron electron interaction facilitated quantum interference effect.

J Phys Condens Matter

January 2025

Condensed Matter Physics, Saha Institute of Nuclear Physics, Sector 1, Block AF, Bidhannagar, Kolkata 700 064, Kolkata, West Bengal, 700064, INDIA.

β-Mn-type chiral cubic CoxZnyMnz (x + y + z = 20) alloys present a intriguing platform for exploring topological magnetic orderings with promising spintronic potential. This study examines the magnetotransport properties of Co6.5Ru1.

View Article and Find Full Text PDF

We propose a novel approach to investigate the brain mechanisms that support coordination of behavior between individuals. Brain states in single individuals defined by the patterns of functional connectivity between brain regions are used to create joint symbolic representations of brain states in two or more individuals to investigate symbolic dynamics that are related to interactive behaviors. We apply this approach to electroencephalographic data from pairs of subjects engaged in two different modes of finger-tapping coordination tasks (synchronization and syncopation) under different interaction conditions (uncoupled, leader-follower, and mutual) to explore the neural mechanisms of multi-person motor coordination.

View Article and Find Full Text PDF

Metastability of multi-population Kuramoto-Sakaguchi oscillators.

Chaos

January 2025

Department of Physics, Tohoku University, Sendai 980-8578, Japan.

An Ott-Antonsen reduced M-population of Kuramoto-Sakaguchi oscillators is investigated, focusing on the influence of the phase-lag parameter α on the collective dynamics. For oscillator populations coupled on a ring, we obtained a wide variety of spatiotemporal patterns, including coherent states, traveling waves, partially synchronized states, modulated states, and incoherent states. Back-and-forth transitions between these states are found, which suggest metastability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!