ACL graft migration under cyclic loading.

Knee Surg Sports Traumatol Arthrosc

Department of Orthopaedic Surgery, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.

Published: August 2010

Elongation and migration of ACL grafts will lead to a deterioration of the initial stability of ACL reconstructions. The graft migration has been sparsely investigated independently from the elongation of the graft-fixation complex. The hypothesis of this investigation was that cyclic tensile loads cause a measurable migration of the grafts. Three graft/fixation combinations were investigated in human femora (n = 7): human bone-patellar tendon grafts fixed with a biointerference screw (BPTG-IS) and free tendon grafts (porcine) fixed with either a Bio-TransFix pin (FTG-TF) or an Endobutton CL (FTG-EB). The grafts were fitted with tantalum markers. Then, the specimens were repetitively loaded (50-250 N, 800 cycles). The marker position was fluoroscopically determined at defined intervals and the migration calculated from the change in position relative to a fiducial marker within the bone. A migration of the grafts occurred in all three groups. The migration in the FTG-EB group was significantly larger than in the two other groups (P < 0.01). After 800 cycles, average migration was 0.3 (+/-0.2) mm in the BPTG-IS group, 0.7 (+/-0.4) mm FTG-TF group, 2.0 (+/-1.3) mm in the FTG-EB group. This migration might contribute to a loss of initial stability. Because the graft migration was dependent on the technique, the presented data might provide additional arguments for making the decision on the most appropriate graft/fixation combination.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00167-009-0970-2DOI Listing

Publication Analysis

Top Keywords

graft migration
12
migration
10
initial stability
8
migration grafts
8
tendon grafts
8
800 cycles
8
ftg-eb group
8
grafts
6
acl graft
4
migration cyclic
4

Similar Publications

The digastric muscle is a suprahyoid muscle that is composed of an anterior belly and a posterior belly, which originate from the first and second pharyngeal arches, respectively, and they are innervated by the nerves of these arches. The digastric muscles are involved in the elevation of the hyoid bone and depression of the mandible during mastication, speech, and swallowing. In this report, we present the rare case of bilateral accessory anterior belly of the digastric muscles (ABDMs) that originated from the digastric fossa, medial to the anterior bellies.

View Article and Find Full Text PDF

Physical principles and mechanisms of cell migration.

NPJ Biol Phys Mech

January 2025

Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN USA.

Cell migration is critical in processes such as developmental biology, wound healing, immune response, and cancer invasion/metastasis. Understanding its regulation is essential for developing targeted therapies in regenerative medicine, cancer treatment and immune modulation. This review examines cell migration mechanisms, highlighting fundamental physical principles, key molecular components, and cellular behaviors, identifying existing gaps in current knowledge, and suggesting potential directions for future research.

View Article and Find Full Text PDF

Background: The periosteum consists of an outer fibrous layer and an inner cellular layer, where bone cells reside. Hence, it has been suggested that applying periosteum to a periodontal defect may help new bone formation. The purpose of this case study is to present the clinical and radiographic outcomes of a vestibular regenerative approach and the application of a connective tissue graft (CTG) with periosteum to improve the periodontal prognosis of a pathologically migrated hopeless tooth with an endo-periodontal lesion (EPL).

View Article and Find Full Text PDF

Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.

View Article and Find Full Text PDF

GABAergic Progenitor Cell Graft Rescues Cognitive Deficits in Fragile X Syndrome Mice.

Adv Sci (Weinh)

January 2025

Department of Neurology, Institute of Neuroscience, Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, China.

Fragile X syndrome (FXS) is an inherited neurodevelopmental disorder characterized by a range of clinical manifestations with no effective treatment strategy to date. Here, transplantation of GABAergic precursor cells from the medial ganglionic eminence (MGE) is demonstrated to significantly improve cognitive performance in Fmr1 knockout (KO) mice. Within the hippocampus of Fmr1-KO mice, MGE-derived cells from wild-type donor mice survive, migrate, differentiate into functionally mature interneurons, and form inhibitory synaptic connections with host pyramidal neurons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!